547
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

The electronic conductivity in single crystals of lithium niobate and lithium tantalate family

, &
Pages 102-109 | Received 29 Aug 2015, Accepted 30 Oct 2015, Published online: 15 Apr 2016

References

  • J. G. Gualtieri, J. A. Kosinski, A. Ballato: Piezoelectric materials for acoustic wave applications. IEEE Trans Ultrason Ferroelectr Freq Control. 41, 53–59 (1994).
  • L. Arizmendi: Photonic applications of lithium niobate crystals. Phys Stat Sol. 201, 253–283 (2004).
  • R. L. Byer: Quasi-phasematched nonlinear interactions and devices. J Nonlinear Opt Phys Mater. 06, 549–592 (1997).
  • M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer: Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J Quantum Electron. 28, 2631–2654 (1992).
  • K. K. Wong: Properties of lithium niobate. London: IET, (2002).
  • T. Volk, M. Wohlecke: Lithium niobate: defects, photorefraction and ferroelectric switching. Berlin, Heidelberg: Springer-Verlag; (2008).
  • Y. Furukawa, K. Kitamura, E. Suzuki, K. Niwa: Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system. J Cryst Growth. 197, 889–895 (1999).
  • P. F. Bordui, R. G. Norwood, D. H. Jundt, M. M. Fejer: Preparation and characterization of off-congruent lithium niobate crystals. J Appl Phys. 71, 875–879 (1992).
  • G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, M. Wöhlecke: Characterization of stoichiometric LiNbO3 grown from melts containing K2O. Appl Phys A Sol Surf. 56, 103–108 (1993).
  • Y. Furukawa, M. Sato, F. Nitanda, K. Ito: Growth and characterization of MgO-doped LiNbO3 for electro-optic devices. J Cryst Growth. 99, 832–836 (1990).
  • D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, M. M. Fejer: Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion. J Appl Phys. 101, 093108 (2007).
  • V. Ya. Shur, A. R. Akhmatkhanov, M. A. Chuvakova, I. S. Baturin: Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate. Appl Phys Lett. 105, 152905 (2014).
  • V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin, E. V. Shishkina: Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by vapor transport equilibration. J Appl Phys. 111, 014101 (2012).
  • D. A. Bryan, R. Gerson, H. E. Tomaschke: Increased optical damage resistance in lithium niobate. Appl Phys Lett. 44, 847–849 (1984).
  • Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, G. Foulon: Green-induced infrared absorption in MgO doped LiNbO3. Appl Phys Lett. 78, 1970 (2001).
  • V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin: Micro- and nano-domain engineering in lithium niobate. Appl Phys Rev. 2, 040604 (2015).
  • V. Ya. Shur: Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3. J Mater Sci. 41, 199–210 (2006).
  • V. Ya. Shur: Domain nanotechnology in lithium niobate and lithium tantalate crystals. Ferroelectrics. 399, 97–106 (2010).
  • V. Ya. Shur, Y. A. Popov, N. V. Korovina: Bound internal field in lead germanate. Sov Phys Sol State. 26, 471–474 (1984).
  • V. Ya. Shur, A. L. Gruverman, E. L. Rumyantsev: Dynamics of domain structure in uniaxial ferroelectrics. Ferroelectrics. 111, 123–131 (1990).
  • V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, M. A. Dolbilov: Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family. Phys Solid State. 52, 2147–2153 (2010).
  • I. S. Baturin, A. R. Akhmatkhanov, V. Ya. Shur, M. S. Nebogatikov, M. A. Dolbilov, E. A. Rodina: Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics. 374, 1–13 (2008).
  • V. M. Fridkin: Ferroelectric semiconductors. New York: Consultants Bureau; (1980).
  • V. Ya. Shur, A. R. Akhmatkhanov, D. S. Chezganov, A. I. Lobov, I. S. Baturin, M. M. Smirnov: Shape of isolated domains in lithium tantalate single crystals at elevated temperatures. Appl Phys Lett. 103, 242903 (2013).
  • J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, E. Diéguez: Hydrogen in lithium niobate. Adv Phys. 45, 349–392 (1996).
  • K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Krätzig, K. Buse, S. Kapphan, M. Gao, E. Kratzig: Origin of thermal fixing in photorefractive lithium niobate crystals. Phys Rev B. 56, 1225–1235 (1997).
  • A. A. Esin, A. R. Akhmatkhanov, I. S. Baturin, V. Ya. Shur: Increase and relaxation of abnormal conduction current in lithium niobate crystals with charged domain walls. Ferroelectrics. 476, 94–104 (2015).
  • V. Ya. Shur, I. S. Baturin, A. R. Akhmatkhanov, D. S. Chezganov, A. A. Esin: Time-dependent conduction current in lithium niobate crystals with charged domain walls. Appl Phys Lett. 103, 102905 (2013).
  • A. Crassous, T. Sluka, A. K. Tagantsev, N. Setter: Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat Nanotechnol. 10, 614–618 (2015).
  • S. Damm, N. C. Carville, M. Manzo, K. Gallo, S. G. Lopez, T. E. Keyes, R. J. Forster, B. J. Rodriguez, J. H. Rice: Surface enhanced luminescence and Raman scattering from ferroelectrically defined Ag nanopatterned arrays. Appl Phys Lett. 103, 083105 (2013).
  • S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, J. H. Rice: Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods. J Phys Chem C. 116, 26543–26550 (2012).
  • S. Habicht, R. J. Nemanich, A. Gruverman: Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects. Nanotechnology. 19, 495303 (2008).
  • A. Nguyen, P. Sharma, T. Scott, E. Preciado, V. Klee, D. Sun, I. H. Lu, D. Barroso, S. Kim, V. Ya. Shur, A. R. Akhmatkhanov, A. Gruverman, L. Bartels, P. A. Dowben: Toward ferroelectric control of monolayer MoS2. Nano Lett. 15, 3364–3369 (2015).
  • A. K. Tagantsev, I. Stolichnov, E. L. Colla, N. Setter: Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features. J Appl Phys. 90, 1387–1402 (2001).
  • X. J. Lou: Polarization fatigue in ferroelectric thin films and related materials. J Appl Phys. 105, 024101 (2009).
  • V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin: Fatigue effect in ferroelectric crystals: Growth of the frozen domains. J Appl Phys. 111, 124111 (2012).
  • V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin: Fatigue Effect in stoichiometric LiTaO3 crystals produced by vapor transport equilibration. Ferroelectrics. 426, 142–151 (2012).
  • A. S. Pritulenko, A. V. Yatsenko, S. V. Yevdokimov: Analysis of the nature of electrical conductivity in nominally undoped LiNbO3 crystals. Crystallogr Reports. 60, 267–272 (2015).
  • N. Meyer, G. F. Nataf, T. Granzow: Field induced modification of defect complexes in magnesium-doped lithium niobate. J Appl Phys. 116, 244102 (2014).
  • A. Dhar, N. Singh, R. K. Singh, R. Singh: Low temperature dc electrical conduction in reduced lithium niobate single crystals. J Phys Chem Solids. 74, 146–151 (2013).
  • S. Klauer, M. Woehlecke, S. Kapphan: Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3. Phys Rev B. 45, 2786–2799 (1992).
  • K. Singh: Electrical conductivity of non-stoichiometric LiNbO3 single crystals. Ferroelectrics. 306, 79–92 (2004).
  • S. V. Yevdokimov, A. V. Yatsenko: Specific features of the dark conductivity in lithium niobate crystals of congruent composition. Phys Solid State. 48, 336–339 (2006).
  • Q. Wang, S. Leng, Y. Yu: Activation energy of small polarons and conductivity in LiNbO3 and LiTaO3 crystals. Phys Status Solidi. 194, 661–665 (1996).
  • A. Mansingh, A. Dhar: The AC conductivity and dielectric constant of lithium niobate single crystals. J Phys D Appl Phys. 18, 2059–2071 (1985).
  • A. El-Bachiri, F. Bennani, M. Bousselamti: Ionic and polaronic conductivity of lithium niobate. Spectrosc Lett. 47, 374–380 (2014).
  • B. Ruprecht, J. Rahn, H. Schmidt, P. Heitjans: Low-temperature DC conductivity of LiNbO3 single crystals. Zeitschrift für Phys Chemie. 226(5–6), 431–437 (2012).
  • J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt: Li self-diffusion in lithium niobate single crystals at low temperatures. Phys Chem Chem Phys. 14, 2427–2433 (2012).
  • K. Brands, M. Falk, D. Haertle, T. Woike, K. Buse: Impedance spectroscopy of iron-doped lithium niobate crystals. Appl Phys B. 91, 279–281 (2008).
  • I. Bhaumik, S. Ganesamoorthy, R. Bhatt, A. K. Karnal, V. K. Wadhawan, P. K. Gupta, S. Kumaragurubaran, K. Kitamura, S. Takekawa, M. Nakamura: Dielectric and ac conductivity studies on undoped and MgO-doped near-stoichiometric lithium tantalate crystals. J Appl Phys. 103, 1–6 (2008).
  • R. H. Chen, L.-F. Chen, C.-T. Chia: Impedance spectroscopic studies on congruent LiNbO3 single crystal. J Phys Condens Matter. 19, 086225 (2007).
  • E. De Miguel-Sanz, M. Carrascosa, L. Arizmendi: Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe. Phys Rev B. 65, 165101 (2002).
  • Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse: Photorefractive properties of lithium niobate crystals doped with manganese. J Opt Soc Am B. 20, 1491–1502 (2003).
  • V. Ya. Shur, E. A. Mingaliev, V. A. Lebedev, D. K. Kuznetsov, D. V. Fursov: Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals. J Appl Phys. 113, 187211 (2013).
  • I. S. Baturin, M. V. Konev, A. R. Akhmatkhanov, A. I. Lobov, V. Ya. Shur: Investigation of jerky domain wall motion in lithium niobate. Ferroelectrics. 374, 136–143 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.