1,011
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

What is a ferroelectric–a materials designer perspective

Pages 164-182 | Received 08 Aug 2016, Accepted 28 Aug 2016, Published online: 14 Oct 2016

References

  • H. D. Megaw, Origin of ferroelectricity in barium titanate and other perovskite-type crystals. Acta Cryst. 5, 739–749 (1952).
  • A. R. von Hippel, Piezoelectricity, ferroelectricity, and crystal structure. Zeitschrift fiir Physik. 133, 58–173 (1952).
  • K. Aizu, Possible species of ferroelectrics. Physical Review 146, 423–429 (1966).
  • L. A. Shuvalov, Symmetry aspects of ferroelectricity. J. Phys. Soc. Jpn. (Supp) 28, 38–47 (1970).
  • A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in ferroic crystals and thin films. Springer; 2010.
  • M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics and related materials. Oxford: OUP Oxford; 1977.
  • N. R. Ivanov, L. A. Shuvalov, and O. A. Chikhladze, KIO3-The first ferroelectric with non-reorientable and non-180o switchable components of spontaneous polarisation. Physics Letters 45A, 437–438 (1973).
  • Figure adapted from V. Gopalan, V. Dierolf, and D. A. Scrymgeour, Defect–domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 37, 449–489 (2007).
  • A. J. Lovinger, T. Furukawa, G. T. Davis and M. G. Broadhurst, Crystallographic changes characterizing the Curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 1. As-crystallized samples. Polymer 24, 1226–1232 (1983).
  • T. Mitsui and W. B. Westphal, Dielectric and X-Ray Studies of CaxBa1-xTiO3 and CaxSr1-xTiO3 Phys. Rev.. 124, 1354–1359 (1961).
  • G. H. Olsen, M. H. Sorby, B. C. Hauback, S. M. Selbach, and T. Grande, Revisiting the Crystal Structure of Rhombohedral Lead Metaniobate. Inorg. Chem. 53, 9715–9721 (2014).
  • G. M. Sahini, T. Grande, B. Fraygola, A. Biancoli, D. Damjanovic, and N. Setter, Solid Solutions of Lead Metaniobate—Stabilization of the Ferroelectric Polymorph and the Effect on the Lattice Parameters, Dielectric, Ferroelectric, and Piezoelectric Properties. J. Am. Ceram. Soc. 97(1), 220–227 (2014).
  • J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, D. G. Schlom, Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).
  • T. Shimizu, K. Katayama, T. Kiguchi, A. Akama, T. J. Konno, and H. Funakubo, Growth of epitaxial orthorhombic YO1.5-substituted HfO2 thin film. APL 107, 032910 (2015).
  • R. Materlik, C. Kuenneth, and A. Kersch, The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model J. Appl. Phys. 117, 134109 (2015).
  • S. C. Abrahams, Structurally Based Prediction of Ferroelectricity in Inorganic Materials with Point Group 6mm. Acta Cryst. B 44, 585–595 (1988).
  • S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Atomic displacement relationship to Curie temperature and spontaneous polarisation in displacive ferroelectrics. Phys Rev. 172, 551–553 (1968).
  • H. Moriwake, A. Konishi, T. Ogawa, K. Fujimura, C. AJ. Fisher, A. Kuwabara, T. Shimizu, S. Yasui, and Itoh M: Ferroelectricity in wurtzite structure simple chalcogenide. APL 104, 242909 (2014).
  • J. W. Bennett, and K. M. Rabe, Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations. J Solid State Chem. 195, 21–31 (2012).
  • C. Kittel, Theory of antiferroelectric crystals. Phys. Rev. 82, 729–732 (1951).
  • G. Shirane, E. Sawaguchi, and Y. Takagi, Dielectric properties of lead zirconate. Phys. Rev. 84, 476–481 (1951).
  • L. E. Cross, A thermodynamic treatment of ferroelectricity and antiferroelectricity in pseudo-cubic dielectrics. Phil. Mag. 1, 76–92 (1956).
  • E. V. Balashova and A. K. Tagantsev, Polarisation response of crystals with structural and ferroelectric instabilities. Phys. Rev. B. 41, 9979–9986 (1993).
  • A. M. Glazer, K. Roleder, and J. Dec, Structure and disorder in single-crystal lead zirconate, PbZrO3. Acta Cryst. B. 49, 846–852 (1993).
  • G. Shirane, Ferroelectricity and antiferroelectricity in ceramic PbZrO3 containing Ba or Sr. Phys. Rev. 86, 219–227 (1952).
  • G. Shirane, R. H. Newnham, and R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na, K)Nb03. Phys. Rev. 96, 581–588 (1954).
  • H. Shimizu, H. Guo, S. E. Reyes-Lillo, Y. Mizuno, K. M. Rabe, and C. A. Randall, Lead-free antiferroelectric: xCaZrO3-(1 − x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Transactions 44, 10763–10772 (2015).
  • B. P. Pokharel and D. Pandey, Dielectric studies of phase transitions in (Pb1-xBax)ZrO3. J. Appl. Phys. 88, 5364–5373 (2000).
  • E. P. Smirnovna, A. V. Sotnikov, R. Kunze, M. Weihnacht, O. E. Kvyatkovskii, V. V. Lemanov, Interrelation of antiferrodistortive and ferroelectric phase transitions in Sr1-xAxTiO3 (A=Ba, Pb). Solid State Communications :133, 421–425 (2005).
  • H. Ohwa, M. Iwata, H. Orihara, N. Yasuda, and Y. Ishibashi, Observation of the distribution of the transition temperature in Pb(In1/2Nb1/2)O3. J. Phys. Soc. Japan 69, 1533–1537 (2000).
  • C. G. Stenger and A. J. Burgraaf, Order-disorder reactions in the ferroelectric perovskites Pb(Sc1/2Nb1/2)03 and Pb(Sc1/2Ta1/2)O3 relation between ordering and properties phys. stat. sol.: 61, 653–664 (1980).
  • M. Yokosuka and K. I. Imazeki, Ferroelectricity and phase relations in the system Pb(Yb1/2Nb1/2)O3-PbZrO3. Jpn. J. Appl. Phys. 35, 5109–5112 (1996).
  • L. E. Cross and K. H. Härtdl, Ferroelectrics. In E. C. Henry, Encycl. Chem. Technol. 1980: 9, 1–25. (Wiley, UK).
  • J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Orthorhombic ABC semiconductors as antiferroelectrics. PRL :110, 017603 (2013).
  • X. K. Wei, A. K. Tagantsev, A. Kvasov, K. Roleder, C. L. Jia, and N. Setter, Ferroelectric translational antiphase boundaries in non-polar materials. Nat. Commun. 5, 5031 (2014).
  • L. E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987).
  • A. A. Bokov and Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. Journal of Materials Science 41, 31–52 (2006).
  • V. Westphal, W. Kleemann, M. D. Glinchuk, Diffuse phase transitions and random-field-induced domain states of the “Relaxor” ferroelectric PbMg1/3Nb2/3O3. PRL 68, 847–850 (1992).
  • R. Sommer, N. K. Yushin, and J. J. van der Klink, Polar metastability and an electric-field-induced phase transition in the disordered perovskite Pb(Mg1/3Nb2/3)O3. PRB 48, 13230–13237 (1993).
  • V. V. Shvartsman and D. C. Lupascu, Lead-Free Relaxor Ferroelectrics. J. Am. Ceram. Soc. 9, 1–26 (2012).
  • N. Setter, L. E. Cross, An optical study of the ferroelectric relaxors PMN, PST and PSN. Ferroelectrics 37, 551–554 (1981).
  • J. Petzelt, D. Nuzhnyy, M. Savinov, V. Bovtun, M. Kempa, T. Ostapchuk, J. Hlinka, G. Canu, and V. Buscaglia, Broadband Dielectric Spectroscopy of Ba(Zr,Ti)O3: Dynamics of Relaxors and Diffuse Ferroelectrics. Ferroelectrics 469, 14–25 (2014).
  • T. Maiti, R. Guo, and A. S. Bhalla, The evolution of relaxor behavior in Ti4+ doped BaZrO3 ceramics. J. Appl. Phys. 100, 114109 (2006).
  • T. Maiti, R. Guo, and A. S. Bhalla, Evaluation of experimental resume of BaZrxTi1-xO3 with perspective to ferroelectric relaxor family: An overview. Ferroelectrics 425, 4–26 (2011).
  • A. Bosak, D. Chernyshov, S. K. Vakhrushev, and M. Krisch, Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modeling. Acta Cryst. A. A68, 117–123 (2012).
  • G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, New ferroelectrics of complex composition. Soviet Physics Solid State 2, 2651–2654 (1961).
  • V. A. Isupov, Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 perovskites and their solid solutions. Ferroelectrics 315, 123–147 (1985).
  • G. O. Jones and P. A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound (Na0.5Bi0.5)TiO3. Acta Cryst. B. 58, 168–178 (2002).
  • M. Matsuura, I. Iida, K. Hirota, K. Ohwada, Y. Noguchi, and M. Miyayama, Damped soft phonons and diffuse scattering in (Bi1/2Na1/2)TiO3. PRB 87, 064109 (2013).
  • F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli, and C. Galassi, Phase transitions and phase diagram of the ferroelectric perovskite (Na0.5Bi0.5)1−xBaxTiO3 by anelastic and dielectric measurements. PRB 81, 144124 (2010).
  • A. M. Glazer, The Classification of Tilted Octahedra in Perovskites. Acta Cryst. B. 28, 3384–3392 (1972).
  • D. S. Keeble, E. R. Barney, D. A. Keen, M. G. Tucker, J. Kreisel, and P. A. Thomas, Bifurcated Polarisation Rotation in Bismuth-Based Piezoelectrics. Adv. Funct. Mater. 23, 185–190 (2013).
  • S. B. Vakhrushev, V. A. Isupov, B. E. Kvyatkovsky, B. M. Okuneva, I. P. Pronin, G. A. Smolensky, P. P. Syrnikov, Phase transitions and soft modes in sodium bismuth titanate. Ferroelectrics 63, 153–160 (1985).
  • J. Petzelt, S. Kamba, J. Fabry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein, and G. E. Kugel, Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3. J. Phys. : Condense Matter 16, 2719–2731 (2004).
  • J. Yao, W. Ge, L. Luo, J. Li, D. Viehland, and H. Luo, Hierarchical domains in Na1 / 2Bi1 / 2TiO3 single crystals: Ferroelectric phase transformations within the geometrical restrictions of a ferroelastic inheritance. Applied Physics Letters 96, 222905 (2010).
  • R. Beanland and P. A. Thomas, Imaging planar tetragonal sheets in rhombohedral Na0.5Bi0.5TiO3 using transmission electron microscopy. Scripta Materialia 65, 440–443 (2011).
  • E. Aksel, J. S. Forrester, J. L. Jones, P. A. Thomas, K. Page, and M. R. Suchomel, Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3. APL 98, 152901 (2011).
  • B. N. Rao, R. Datta, S. S. Chandrashekaran, D. K. Mishra, V. Sathe, A. Senyshyn, and R. Ranjan, Local structural disorder and its influence on the average global structure and polar properties in (Na0.5Bi0.5)TiO3. PRB 88, 224103 (2013).
  • J. Petzelt, D. Nuzhnyy, V. Bovtun, M. Paściak, S. Kamba, R. Dittmer, S. Svirskas, J. Juras Banys, and J. Rödel, Peculiar Bi-ion dynamics in Na1/2Bi1/2TiO3 from terahertz and microwave dielectric spectroscopy Phase Transitions. 87, 953–965 (2014).
  • V. Dorcet, G. Trolliard, and P. Boullay, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition. Chem. Mater. 20, 5061–5073 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.