124
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Structure and ferroelectric properties of lead-free NBT-KBT-BF ceramics

, , , , , , & show all
Pages 109-117 | Received 07 Nov 2016, Accepted 06 Jun 2017, Published online: 04 Dec 2017

References

  • E. Cross, Materials science-Lead-free at last, Nature, 432, 24–25 (2004).
  • Sh. Zhang, R. Xia, and R. T. Shrout, Lead-Free Piezoelectric Ceramics: Alternatives for PZT?, J. Electroceram. 19, 251–257 (2007).
  • S. O. Leontsev, and R. E. Eitel, Progress in engineering high strain lead-free piezoelectric ceramics, Sci. Technol. Adv. Mater. 11, 044302–044313 (2010).
  • E. Akse, and J. L. Jones, Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators, Sensors 10, 1935–1954 (2010).
  • D. Damjanovich, N. Klein, J. Li, and V. Porokhonskyy, What can be expected from lead-free piezoelectric materials? Funct. Mater. Lett. 3, 5–13 (2010).
  • D. Q. Xiao, Progresses and further considerations on the researchof perovskite lead-free piezoelectric ceramics, J. Adv. Dielectr. 1, 33–40 (2011).
  • Y. Q. Lu, and Y. X. Li, A review on lead-free piezoelectric ceramics studied in China, J. Adv. Dielectr. 1, 269–288 (2011).
  • V. V. Shvartsman, and D. C. Lupascu, Lead-Free Relaxor Ferroelectrics, J. Am. Ceram. Soc. 95, 1–26 (2012).
  • J. L. Hyeong, and Z. H. Shujun, Perovskite Lead-Free Piezoelectric ceramics. In: Lead-Free Piezoelectrics, (Priya S and Nahm S, eds.), New York: Springer, 291–309 (2012).
  • I. Coondoo, N. Panwar, and A. Kholkin, Lead-free piezoelectrics: Current status and perspectives, J. Adv. Dielectr. 3, 1330002–1330022 (2013).
  • J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, Transferring lead-free piezoelectric ceramics into application, J. Euro. Ceram. Soc. 35, 659–682 (2015).
  • P. K. Panda, and B. Sahoo, PZT to Lead Free Piezo Ceramics, Ferroelectrics 474, 128–143 (2015).
  • E. Taghaddos, M. Hejazi, and A. Safari, Lead-free piezoelectric materials and ultrasonic transducers for medical imaging, J. Adv. Dielectr. 5, 1530002 (15 p.) (2015).
  • K. Reichmann, A. Feteira, and M. Li, Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators, Materials 8, 8467–8495 (2015).
  • C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W. Ahn, and W. Jo, Lead-free piezoceramics Where to move on? J. Materiomics 2, 1–24 (2016).
  • G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, New Ferroelectrics of Complex Composition IV, Sov. Phys. Solid State 2, 2651–2654 (1961).
  • S.B. Vakhrushev, V. A. Isupov, B. E. Kvyatkovsky, N. M. Okuneva, I. P. Pronin, G. A. Smolensky, and P. P. Syrnikov, Phase Transitions and Soft Modes in Sodium Bismuth Titanate, Ferroelectrics 63, 153–160 (1985).
  • Yu. N. Venevtsev, E. D. Politova, and S. A. Ivanov, Ferro- and antiferroelectrics of barium titanium oxide family, Chemistry, Moscow, 256 (1985).
  • C. S. Tu, I. G. Siny, and V. H. Schmidt, Sequence of Dielectric Anomalies and High-Temperature Relaxation Behavior in Na1/2Bi1/2TiO3, Phys. Rev. B. 49, 11550–11559 (1994).
  • V. Dorcet, G. Trolliard, and P. Boullay, Reinvestigation of Phase Transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First Order Rhombohedral to Orthorhombic Phase Transition, Chem. Mater. 20, 5061–5073 (2008).
  • H. Nagata, T. Shinya, Y. Hiruma, T. Takenaka, I. Sakaguchi, and H. Haneda, Piezoelectric properties of bismuth sodium titanate ceramics, Developments in Dielectric Materials and Electronic Devices 167, 213–221 (2012).
  • D. Schultz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate, Adv. Funct. Mater. 22, 2285–2294 (2012).
  • R. Beanland, and P. A. Thomas, Symmetry and defects in rhombohedral single-crystalline Na0.5Bi0.5TiO3, Phys. Rev. B. 89, 4102–4110 (2014).
  • V. A. Isupov, Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 Perovskites and Their Solid Solutions, Ferroelectrics 315, 123–147 (2005).
  • K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3 – (Bi1/2K1/2)TiO3 Lead-Free Piezoelectric Ceramics, Jpn. J. Appl. Phys. Part 1 45, 4493–4496 (2006).
  • T. Oh, Dielectric Relaxor Properties in the System of (Na1-xKx)1/2Bi1/2TiO3 Ceramics, Jpn. J. Appl. Phys., Part 1 45, 5138–5143 (2006).
  • Y. R. Zhang, J. F. Li, and B. P. Zhang, Enhancing Electrical Properties in NBT–KBT Lead-Free Piezoelectric Ceramics by Optimizing Sintering Temperature, J. Amer. Ceram. Soc. 91, 2716–2719 (2008).
  • Z. Yang, B. Liu, L. Wei, and Y. Hou, Structure and Electrical Properties of (1–x)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 Ceramics Near Morphotropic Phase Boundary, Mater. Res. Bull. 43, 81–89 (2008).
  • T. Takenaka, H. Nagata, and Y. Hiruma, Phase-transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3 and (Bi1/2K1/2)TiO3–based bismuth perovskite lead-free ferroelectric ceramics, IEEE TUFFC 56, 1595–1612 (2009).
  • G. H. Lee, Y. H. Kwon, and J. H. Koh, Dielectric and piezoelectric properties of (1-x)(Bi,Na)TiO3–x(Bi,K)TiO3 lead-free ceramics for piezoelectric energy harvesters, Ceram. Int. 41, 7897–7902 (2015).
  • Y. Y. Kim, D. H. Lee, T. Y. Kwon, and S. H. Park, Infrared Spectra and Seebeck Coefficient of LnCoO3 with the Perovskite Structure, J. Solid State Chem. 112, 376–380 (1994).
  • W. Kleemann, Random-Field Induced Antiferromagnetic, Ferroelectric and Structural Domain States, Int. J. Mod. Phys. B 7, 2469–2507 (1993).
  • A. H. Segalla, S. S. Nersesov, G. M. Kaleva, and E. D. Politova, Ways of Improving Functional Parameters of High-Temperature Ferroelectric/Piezoelectric Ceramics Based on BiScO3 – PbTiO3 Solid Solutions, Inorg. Mater. 50, 606–611 (2014).
  • C. Zhou, X. Liu, and W. Li, Dielectric and piezoelectric properties of BiFeO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoelectric ceramics, Mater. Sci. Eng. B 153, 31–35 (2008).
  • C. Zhou, X. Liu, W. Li, and C. Yuan, Structure and piezoelectric properties of 0.79Bi0.5Na0.5TiO3−0.18Bi0.5K0.5TiO3−0.03BiFeO3 lead-free piezoelectric ceramics, Mater. Chem. Phys. 114, 832–836 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.