161
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Liquid phase effect of Bi2O3 additive on densification, microstructure and microwave dielectric properties of Mg2TiO4 ceramics

, &
Pages 173-184 | Received 07 Nov 2016, Accepted 06 Jun 2017, Published online: 07 Nov 2017

References

  • G. G. Yao, and P. Liu, Low-temperature sintering and microwave dielectric properties of (1−x)Mg4Nb2O9−xCaTiO3 ceramics. Physica B 405, 547–551 (2010).
  • C. L. Huang, J. J. Wang, and C. Y. Huang, Microwave Dielectric Properties of Sintered Alumina Using Nano-Scaled Powders of α Alumina and TiO2. J. Am. Ceram. Soc. 90, 1487–1493 (2007).
  • C. L. Huang, T. J. Yang, and C. C. Huang, Low Dielectric Loss Ceramics in the ZnAl2O4-TiO2 System as a τf Compensator. J. Am. Ceram. Soc. 92, 119–124 (2009).
  • Y. B. Chen, Crystal structure and dielectric properties of La(Mg1−xZnx)1/2Ti1/2O3 ceramics at microwave frequencies. J. Alloys Compd. 509, 1050–1053 (2011).
  • C. L. Huang, J. J. Wang, and Y. P. Chang, Dielectric Properties of Low Loss (1–x)(Mg0.95Zn0.05)TiO3 – xSrTiO3 Ceramic System at Microwave Frequency. J. Am. Ceram. Soc. 90, 858–862 (2007).
  • J. C. Kim, M. H. Kim, J. B. Lim, S. Nahm, J. H. Paik, and J. H. Kim, J. Am. Ceram. Soc. 90, 641–644 (2007).
  • P. S Anjana, and M. T Sebastian, Preparation, characterization and dielectric properties of PTFE/Ce02 composite for microwave substrate applications. Int. J. Appl. Ceram. Technol. 5, 325–333 (2008).
  • C. L. Huang, and W. R. Yang, Effect of CuO addition to Nd(Zn1/2Ti1/2)O3 ceramics on sintering behavior and microwave dielectric properties. Mater. Lett. 63, 103–105 (2009).
  • A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, High‐Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4. J. Am. Ceram. Soc. 89, 3441–3445 (2006).
  • C. L. Huang, and J. Y. Chen, Low-Loss Microwave Dielectric Ceramics Using (Mg1-xMnx)2TiO4 (x = 0.02–0.1) Solid Solution. J. Am. Ceram. Soc. 92, 675–678 (2009).
  • A. Belous, O. Ovchar, D. Durilin, M. Valant, M. M. Krzmanc and D. Suvorov, Microwave composite dielectrics based on magnesium titanates. J. Eur. Ceram. Soc. 27, 2963–2966 (2007).
  • C. L. Huang, and J. Y. Chen, Dielectric, Optical, and Magnetic Properties Low-Loss Microwave Dielectrics Using Mg2(Ti1−xSnx)O4 (x = 0.01–0.09) Solid Solution. J. Am. Ceram. Soc. 92, 2237–2241 (2009).
  • C. Vigreux, B. Deneuve, J. El. Fallah and J. M. Haussonne, Effects of acceptor and donor additives on the properties of MgTiO3 ceramics sintered under reducing atmosphere. J. Euro. Ceram. Soc. 21, 1681–1684 (2001).
  • T. Takada, S. F Wang, S. Yoshikawa, S. T. Jang, and R. E. Newnham, Effects of Glass Additions on (Zr,Sn)TiO4 for Microwave Applications. J. Am. Ceram. Soc. 77, 2485–2488 (1994).
  • D. Pamu, G. Lakshmi Narayana Rao, and K. C. James Raju, Effect of BaO, SrO and MgO addition on microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. J. Alloys Compd. 475, 745–751 (2009).
  • C. H. Lu, and C. C. Tsai, Homogeneous precipitation synthesis and sintering behavior of microwave dielectrics, Ba(Mg1/3Ta2/3)O3. Mater. Sci. Eng. B 55, 95–101 (1985).
  • R. K. Bhuyan, T. S Kumar, A. R James, and D. Pamu, Structural and Microwave Dielectric Properties of Mg2TiO4 Ceramics Synthesized by Mechanical Method. Int. J. Appl. Ceram. Technol. 10, E18–E24 (2013).
  • C. L. Huang, J. Y. Chen, and B. J. Li, Effect of CaTiO3 addition on microwave dielectric properties of Mg2(Ti0.95Sn0.05)O4 ceramics. J. Alloys Compd. 509, 4247–4251 (2011).
  • B. J. Li, J. Y. Chen, G. S. Huang, C. Y. Jiang, and C. L. Huang, Dielectric properties of B2O3-doped 0.92(Mg0.95Co0.05)2TiO4−0.08(Ca0.8Sr0.2)TiO3 ceramics for microwave applications. J. Alloys Compd. 505, 291–296 (2010).
  • R. K Bhuyan, T. S Kumar, D. Goswami, A. R James, and D. Pamu, Liquid phase effect of La2O3 and V2O5 on microwave dielectric properties of Mg2TiO4 ceramics. J. Electroceram. 31, 48–54 (2013).
  • Y. B. Chen, Dielectric properties and crystal structure of Mg2TiO4 ceramics substituting Mg2+ with Zn2+ and Co2+. J. Alloys Compd. 513, 481–486 (2012).
  • F. Belnou, J. Bernard, D. Houivet, and J.-M. Haussonne, Low temperature sintering of MgTiO3 with bismuth oxides based additions. J. Eur. Ceram. Soc. 25, 2785–2789 (2005).
  • K. W. Tay, Y. P. Fu, J. F. Huang, and H. C. Huang, Effect of Bi2O3 and B2O3 additives on the sintering temperature, microstructure, and microwave dielectric properties for Sm(Mg0.5Ti0.5)O3 ceramics. Ceram. Int. 37, 1025–1031 (2011).
  • B. W. Hakki, and P. D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Technol. 8, 402–410 (1960).
  • W. E. Courtney, Analysis and evaluation of a method of measuring complex permittivity and permeability of microwave materials. IEEE Trans. Microwave Theory Technol. 18, 476–485 (1970).
  • M. A. Petrova, G. A Mikirticheva, A. S Novikova, and V. F Popova, Spinel solid solutions in the systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4. J. Mater Res. 12, 2584–2588 (1997).
  • J. Murbe, and J. Topfer, Ni-Cu-Zn Ferrites for low temperature firing: II. Effects of powder morphology and Bi2 O3 addition on microstructure and permeability. J. Electroceram 16, 199–205 (2006).
  • K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 91, 69–85 (1989).
  • W. Lei, W. Z. Lu, J. H. Zhu, and X. H. Wang, Microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites. Mater. Lett. 61, 4066–4069 (2007).
  • W. S. Kim, T. H. Hong, E. S. Kim, and K. H. Yoon, Microwave DielectricProperties and Far Infrared Reflectivity Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with Additives. Jpn. J. Appl. Phys. 37, 5367–5371 (1998).
  • J. Petzelt, S. Pacesova, J. Fousek, S. Kamba, V. Zeleny, V. Koukal, J. Schwarzbach, B. P. Gorshunov, and A. A. Volkov, Dielectric spectra of some ceramics for microwave applications in the range of 1010–1014 Hz. Ferroelectrics 93, 77–85 (1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.