228
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of an ultra-fine Co3O4 / graphene composite by one-step hydrothermal process and its effective catalytic performance on thermal decomposition of ammonium perchlorate

, &
Pages 119-132 | Received 15 Aug 2017, Accepted 20 Feb 2018, Published online: 04 Jun 2018

References

  • Y. C. Yang, C. Ning, The theoretical basis of rocket motor (Northwestern Polytechnical University Press, Xi`an, 2016).
  • D. R. Kshirsagar, S. Jain, S. N. Jawalkar, et al., Evaluation of nano-Co3O4 in HTPB-based comp- osite propellant Formulations, Prop. Expl. Pyro. 41, 304–311 (2016).
  • A. E. Fogelzang, et al., Mechanism of modifying ballistic properties of propellant formulations by fast burning inclusions, Defence. Sci. J. 48 (4), 357–364 (1998).
  • X. L. Liu, W. Q. Zhang, et al., Low-migratory ionic ferrocene-based burning rate catalysts with high combustion catalytic efficiency, New J. Chem. 39, 155–162 (2015).
  • Z. R. Liu, Thermal analyses for energetic materials (National Defense Industry Press, Beijing) pp. 2–008.
  • T. Chen, P. Du, W. Jiang, et al., A facile one-pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate, RSC Adv. 6, 83838–83847 (2016).
  • Y. F. Zhang, C. G. Meng, Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate, J. Alloys Compd. 674, 259–265 (2016).
  • Q. L. Heng, F. Xiao, et al., Nano-CuO: Preparation with different morphologies and catalytic per-formance for thermal decomposition of ammonium perchlorate, Chin. J. Inorg. Chem. 25 (2), 359–363 (2009).
  • Y. F. Lan, B. X. Jin, J. K. Deng, et al., Graphene/nickel aerogel: an effective catalyst for the the-rmal decomposition of ammonium perchlorate, RSC Adv. 6:82112–82117 (2016).
  • Z. Y. Cheng, G. F. Zhang, et al. Synthesis, characterization, migration and catalytic effects of energyetic ionic ferrocene compounds on thermal decomposition of main components of solid propellants, Inorg. Chim. Acta. 421, 191–199 (2014).
  • S. Isert, J. Lori, Groven, et al. The effect of encapsulated nanosized catalysts on the combus- tion of composite solid propellants[J], Combust Flame. 162, 1821–1828 (2015).
  • H. J. Mo, H. Y. Zhang. Solid propelalnts applying for kinetic or hyper-velocity missiles, Chin. J. Expl & Prop. 28 (2), 1–4 (2005).
  • L. L. Liu, F. S. Li, L. H. Tan, et al., Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate, Prop. Expl. Pyro. 29, 34–38 (2004).
  • Y. Yang, H. Y. Liu, F. S. Li, et al, Nanometer transition metal oxide and rare earth oxide cata-lysis on AP thermal decomposition, J. Propuls. Technol. 27, 92–96 (2006).
  • Z. Y. Ma, F. S. Li, A. S. Chen, et al., Preparation and thermal decomposition behavior of Fe2O3/ammonium perchlorate composite nanoparticles, Acta Chimica Sinica. 62, 1252–1255 (2004).
  • X. Y. Jing, S. S Song, et al. Solvothermal synthesis of morphology controllable CoCO3 and their conversion to Co3O4 for catalytic application, Powder Technol. 217, 624–628 (2012).
  • W. Y. Li, L. N. Xu, J. Chen. Co3O4 nanomaterials lithium-ion batteries and gas sensors, Adv. F-unct. Mater. 15, 851–857 (2005).
  • G. X. Wang, Y. Chen, K. Konstantinov, et al. Nanosize cobalt oxides as anode materials for lithium -ion batteries, J. Alloys Compd. 340, 5–10 (2002).
  • X. Wang, X. Y. Chen, L .S. Gao, et al., One-dimensional arrays of Co3O4 nanoparticles:  Synthesis, characterization, and optical and electrochemical properties, J. Phys. Chem. B. 108 (42), 16401–16404 (2004).
  • D. E. Zhang, F. Li, A. M. Chen, et al., A facile synthesis of Co3O4 nanoflakes: magnetic and catalytic properties, Solid State SCI. 13, 1221–1225 (2011).
  • L. H. Hu, Q. Peng, Y. D. Li, Selective synthesis of Co3O4 nanocrystal with different Shape and crystal plane effect on catalytic property for methane combustion, J. Am. Chem. Soc. 130, 16136–16137 (2008).
  • H. W. Che, A. F. Liu, Hierarchical Co3O4 nanoflowers assembled from nanosheets: facile synthesis and their application in supercapacitors, J Mater Sci: Mater Electron. 26, 4097–4104 (2015).
  • Y. D. Li, Y. P. He, L. Q. Li, et al., Fabrication of Co3O4 ultrafines by a liquid-control- precipit-ation Method, Chem. J. Chinese. U. 20 (4), 519–522 (1999).
  • N. Bahlawane, E. F. Rivera, K. Kohse-hoinghaus, et al. Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition, Appl. Catal. B: Environmental. 53, 245–255 (2004).
  • J. Z. Cao, Y. C. Zhao, W. Yang, et al. Sol-gel preparation and characterization of Co3O4 nanoc-rystals, J. Univ. Sci. Technol. B. 10, 54–57 (2003).
  • T. He, D. R. Chen, X. L. Jiao, et al. Solubility-controlled synthesis of high-quality Co3O4 nanocrystals, Chem. Mater. 17, 4023–4030 (2005).
  • J. S. Zhang, J. Qian, Z. G. Liu, et al., In-situ coating process and disperse property studies of nanometer titanium dioxide prepared by hydrothermal synthesis, Mater. Sci. Technol. 14 (5), 495–498 (2006).
  • D. H. Zhang, C. M. Zhang, H. B. Yang, et al., Synthesis and properties of precious metals-graphene nanocomposites (National Defense Industry Press, Beijing, 2015).
  • L. Yu, Investigation on graphene gunctionalized with energetic groups (Beijing institute of technology, Beijing, 2015).
  • W. S. Hummers Jr, R. E. Offeman, Preparation of graphitic oxide, J Am Chem Soc. 80 (6), 1339 (1958).
  • X. Jiang, Y. W. Ma, J. J. Li, et al., Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage, J. Phys. Chem. C. 114 (51), 22462–22465 (2010).
  • S. Huang, Y. H. Jin, M. Q. Jia, Preparation of graphene/ Co3O4 composites by hydrothermal method and their electrochemical properties, Electrochimica Acta. 95, 139–145 (2013).
  • H. Lin, H. G. Qi, J. Z. Wang, et al., Self-assembled graphene/polyaniline/ Co3O4 ternary hybrid aerogels for supercapacitors, Electrochimica Acta. 191, 444–451 (2016).
  • S. Paulose, R. Raghavan, K. Benny. George., Graphite oxide–iron oxide nanocompos- it es as a new class of catalyst for the thermaldecomposition of ammonium perchlorate, RSC Adv.6, 45977–45985 (2016).
  • W. Chen, L. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures, Nanoscale. 3 (8), 3132–3137 (2011).
  • H. T. Wang, L. Zhang, X. H. Tan, et al., Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures, J. Phys. Chem. C. 115, 17599–17605 (2011).
  • T. Szabó, O. Berkesi, P. Forgó, et al., Evolution of surface functional groups in a series of progressively oxidized graphite oxides: physical and chemical characterization, Chem Mater. 18 (11), 2740–2749 (2006).
  • A. B. Bourlinos, D. Gournis, D. Petridis, et al., Graphite oxide: chemistry reduction to graphite and surface modification with primary aliphatic amines and amino acids, Langmuir. 19 (15), 6050–6055 (2003).
  • M. Acik, G. Lee, C. Mattevi, et al., The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy, J Phys. Chem C. 115 (40), 19761–19781 (2011).
  • S. Park, K. S. Lee, G. Bozoklu, et al., Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking, ACS Nano. 2 (3), 572–578 (2008).
  • A. F. K. Meriem, A. Tawfik, Q. Liu, et al., Catalytic effect of CuO nanoplates, a graphene (G)/ CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate, RSC Adv. 6 74155–7461 (2016).
  • Z. H. Li, Y. H. Cui, J. Chen, et al. Fabrication of (Co,Mn)3O4/rGO composite for lithium ion battery anode by a one-step hydrothermal process with H2O2 as additive, PLOS ONE. 11 (10), 1–11 (2016).
  • Y. G. Li, Y. Y. Wu. Critical role of screw dislocation in the growth of Co(OH)2 nanowires as intermediates for Co3O4 nanowire growth, Chem. Mater. 22 (19), 5537–5542 (2010).
  • M. Mori, A. lb John. Weil, Mibuo Ishiguro., The formation of and interrelation between some μ-Peroxo binuclear cobalt complexes, Mori, Weil, Ishiguro. 90 (3), 615–621 (1968).
  • V. V. Boldyrev, Thermal decomposition of ammonium perchlorate, Thermochim Acta. 443, 1–36 (2006).
  • N. Li, Z. F. Geng, M. H. Cao, et al., Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate, Carbon. 54,124–132 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.