151
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Hysteretic electro-mechanical coupling response of PZT fibers: Constitutive modeling and experiments

, , &
Pages 95-119 | Received 21 Jul 2017, Accepted 09 Mar 2018, Published online: 08 May 2018

References

  • E. Bassiouny, A. F. Ghaleb, and G. A. Maugin, Thermodynamical Formulation for Coupled Electromechanical Hysteresis Effects-I. Basic Equations, Int. J. Engrg Sci. 26, 1279–1295 (1988a).
  • E. Bassiouny, A. F. Ghaleb, and G. A. Maugin, Thermodynamical Formulation for Coupled Electromechanical Hysteresis Effects-II. Poling of Ceramics, Int. J. Engrg Sci. 26, 1297–1306 (1988b).
  • H. Ben Atitallah, Z. Ounaies, and A. Muliana, Temperature and Time Dependence of the Electro-Mechanical Properties of Flexible Active Fiber Composites, Smart Mater. Struct. 25, 045002 (2016).
  • A. A. Bent, and N. W. Hagood, Piezoelectric fibre composites with interdigitated electrodes, J. Intell. Mater. Syst. Struct. 8, 903–919 (1997).
  • C. R. Bowen, R. Stevens, L. J. Nelson, A. C. Dent, G. Dolman, B. Su, T. W. Button, M. G. Cain, and M. Stewart, Manufacture and Characterization of High Activity Piezoelectric Fibres, Smart Mater. Struct. 15, 295–301 (2006).
  • M. Brokate and E. D. Torre, The Wiping-out Property of the Moving Model, IEEE Trans Magn. 27, 3811–3814 (1991).
  • K. H. Chan and N. W. Hagood, Modeling of Nonlinear Piezoceramics for Structural Actuation, Proc. of SPIE's Symp. on Smart Struct. Mater. 2190, 194–205 (1994).
  • H. Chung and H. Kim, Characteristics of domain in tetragonal phase PZT ceramics,, Ferroelectr. 76 (1), 327–333 (1987).
  • S. Doraiswamy, A. Rao, and A. Srinivasa, Combining thermodynamic principles with preisach models for superelastic shape memory alloy wires, Smart Mater. Struct. 20 (8), 085032 (2011).
  • M. W. Hooker, Properties of PZT-based Piezoelectric Ceramics between −150 and 250°C, NASA Contract Report, NASA/CR-1998-208708, 1998.
  • L. Huang and H. F. Tiersten, Electroelastic equations describing slow hysteresis in polarized ferroelectric ceramic plates, J. App. Phys. 83, 6126–6139 (1998a).
  • L. Huang and H. F. Tiersten, An Analytical Description of Slow Hysteresis in Polarized Ferroelectric Ceramic Actuators, J. Intel. Mater. Syst. and Struct. 9, 417–426 (1998b).
  • S. C. Hwang, C. S. Lynch, and R. M. McMeeking, Ferroelectric/ferroelastic Interactions and a Polatization Swtiching Model, Acta Metall. Mater. 43, 2073–2084 (1995).
  • R. Jayendiran and A. Arockiara, Non-linear Electromechanical Response of 1–3 Type Piezocomposites, Int. J. Solids Struct. 50 (14–15), 2259–2270 (jan. 2013).
  • M. Kamlah, Ferroelectric and ferroelastic piezoceramics–modeling of electromechanical hysteresis phenomena,, Continuum Mech. Thermodyn. 13 (4), 219–268 (2001).
  • K. Khan, A. H. Muliana, H. Ben Atitallah, and Z. Ounaies, Time-dependent and Energy Dissipation Effects on the Electro-Mechanical Response of PZTs, Mech. Mater. 102, 74–89 (2016).
  • J. Li and G. J. Weng, A Micromechanics-Based Hysteresis Model for Ferroelectric Ceramics, J. Intel. Mater. Syst. Struct. 12, 79–91 (2001).
  • C. H. Lin and A. H. Muliana, Polarization switching response of 1–3 and 0–3 active composites, Compos. Struct. 116, 535–551 (2014).
  • C. S. Lynch, The Effect of Uniaxial Stress on the Electro-mechanical Response of 8/65/35 PLZT, Acta Mater. 44, 4137–4148 (1996).
  • I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications. (Academic Press, Cambridge, 2003).
  • A. H. Muliana, A Micromechanical Formulation for Piezoelectric Fiber Composites with Nonlinear and Viscoelastic Constituents, Acta Mater. 58, 3332–3344 (2010).
  • A. Muliana, Time-temperature Dependent Behavior of Ferroelectric Materials undergoing Cyclic Electric Field, Int. J. Solids and Struct. 48 (19), 2718–2731 (2011).
  • A. Muliana, K. Rajagopal, D. Tscharnuter, and G. Pinter, A nonlinear viscoelastic constitutive model for polymeric solids based on multiple natural configuration theory, Int. J. of Solids and Struct. 100, 95–110 (2016).
  • I. Rao and K. Rajagopal, Phenomenological modelling of polymer crystallization using the notion of multiple natural configurations, Interfaces and Free Boundaries 2, 73–94 (2000).
  • K. R. Rajagopal and A. S. Wineman, A Constitutive Equation for Nonlinear Solids which Undergo Deformation Induced Microstructural Changes, Int. J. Plast. 8, 385–395 (1992).
  • K. R. Rajagopal and A. S. Srinivasa, Mechanics of the inelastic behavior of materials. Part II: Inelastic response, Int. J. Plast. 14 (10), 969–995 (1998).
  • K. R. Rajagopal and A. S. Srinivasa, On the Thermomechanics of Shape Memory Wires, Z. Angew. Math. Phys. ZAMP 50, 459–496 (1999).
  • K. R. Rajagopal, and A. S. Srinivasa, On the thermomechanics of materials that have multiple natural configurations Part II: twinning and solid to solid phase transformation, Z. Angew. Math. Phys. 55, 1074–1093 (2004).
  • Y. Shindo, F. Narita, K. Sato, and T. Takeda, Nonlinear Electromechanical Fields and Localized Polarization Switching of Piezoelectric Macrofiber Composites, J. Mech. Mater. Struct. 6, 1089–1102 (2011).
  • M. E. Shirley, and R. Venkataraman, On the identification of Preisach measures. in Smart Structures and Materials, International Society for Optics and Photonics (2003).
  • R. C. Smith, S. Seelecke, M. Dapino, and Z. Ounaies, A unified framework for modeling hysteresis in ferroic materials, J. Mech. Phys. Solids 54, 46–85 (2006).
  • Y. Su, and C. M. Landis, Continuum Thermodynamics of Ferroelectric Domain Evolution: Theory, Finite Element Implementation, and Application to Domain Wall Pinning, “ J. Mech. and Phys. Solids 55, 280–305 (2007).
  • W. Watzka, S. Seifert, H. Scholz, S. Dieter, and A. Schoenecker, L. Seffiner, Dielectric and Ferroelectric Properties of 1–3 Composites Containing Thin PZT-Fibers, Proceedings of the 10th IEEE International Symposium on Applications of Ferroelectrics 2, 569–572 (1996).
  • R. B. Williams, D. J. Inman, M. R. Schultz, M. W. Hyer, and W. K. Wilkie, Nonlinear Tensile and Shear Behavior of Macro Fiber Composite Actuators, J. Comp. Mater. 38, 855–869 (2004).
  • C. H. Yi, C. H. Lin, Y. H. Wang, S. Y. Cheng, and H. Y. Chang, Fabrication and Characterization of Flexible PZT Fiber and Composite, Ferroelectr. 434, 91–99 (2012).
  • S. Yoshikawa, U. Selvaraj, P. Moses, J. Witham, R. Meyer, and T. Shrout, Pb(Zr,Ti)O3 PZT Fibers – Fabrications and Measurement Methods, J. Intell. Mater. Syst. Struct. 6, 152–158 (1995).
  • J. Xing, M. Radovic, and A. Muliana, A nonlinear constitutive model for describing cyclic mechanical responses of BaTiO3/Ag composites, Acta Mech. in press (2017).
  • X. Zhou, and A. Chattopadyay, Hysteretic Behavior and Modeling of Piezoceramics Actuators, J. Appl. Mech. 68, 270–277 (2001).
  • D. Zhou, and M. Kamlah, Dielectric and Piezoelectric Performance of Soft PZT Piezoceramics under Simultaneous Alternating Electromechanical Loading, J. Eur. Ceram. Soc. 25, 2415–2420 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.