2,971
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

A brief review on piezoelectric PVDF nanofibers prepared by electrospinning

, , , , &
Pages 140-151 | Received 08 Oct 2017, Accepted 17 Mar 2018, Published online: 08 May 2018

References

  • J. Sirohi, and I. Chopra, Fundamental understanding of piezoelectric strain sensors, J. Intell. Mater. Syst. Struct. 11, 246–257 (2000).
  • Z. H. Liu, C. T. Pan, L. W. Lin, and H. W. Lai, Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning, Sensors Actuat. A: Phys. 193, 13–24 (2012).
  • H. Yu, T. Huang, M. Lu, M. Mao, Q. Zhang, and H. Wang, Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity, Nanotechnology 24 (40), 405401 (2013).
  • W. A. Yee, M. Kotaki, Y. Liu, and X. Lu, Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers, Polymer. 48 (2), 512–521 (2007).
  • D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, J. Appl. Phys. 87 (9), 4531–4547 (2000).
  • B. Ploss, and B. Ploss, Dielectric nonlinearity of PVDF-TrFE copolymer, Polymer. 41, 6087–6093 (2000).
  • S. A. Theron, E. Zussman, and A. L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions, Polymer. 45, 2017–2030 (2004).
  • J. Lyons, C. Li, and F. Ko, Melt-electrospinning part I: processing parameters and geometric properties, Polymer. 45, 7597–7603 (2004).
  • B. Z. Li, F. F. Zhang, S. A. Guan, J. M. Zheng, and C. Y. Xu, Wearable piezoelectric device assembled by one-step continuous electrospinning, J. Mater. Chem. C. 4, 6988 (2016).
  • N. Hernández-Navarro, V. González-González, I. E. Moreno-Cortez, and M. A. Garza-Navarro, Electrospun polyvinylidene fluoride nanofibers by bubble electrospinning technique, Materials Letters 167, 34–37 (2016).
  • T. P. Lei, Q. Q. Peng, Q. Q. Chen, J. Y. Xiong, F. zhang, and D. H. Sun, Alignment of electrospun fibers using the whipping instability, Materials Letters 193, 248–250 (2017).
  • C. T. Pan, C. K. Yen, S. Y. Wang, Y. C. Lai, and L. W. Lin, Near-field electrospinning enhances the energy harvesting of hollow PVDF piezoelectric fibers, RSC Adv. 5, 85073 (2015).
  • E. M. Alkoy, C. Dagdeviren, and M. Papila, Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3–3 PZT/Polymer Composite, J. Am. Ceram. Soc. 92, 2566 (2009).
  • J. S. Yun, C. K. Park, Y. H. Jeong, J. H. Cho, J-H. Paik, S. H. Yoon, and K-R. Hwang, The fabrication and characterization of piezoelectric PZT/PVDF electrospun nanofiber ccomposites, Nanomater Nanotechnol 6, 20 (2016).
  • J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, Perspective on the development of lead free piezoceramics, J. Am. Ceram. Soc. 92, 1153–1177 (2009).
  • M. F. Chris, E. B. John, and J. B. Keith, Poling effect on d33 in textured Bi0.5Na0.5TiO3-based materials, Scripta. Materialia 68, 443–446 (2013).
  • C. Lee, D. Wood, D. Edmondson, D. Yao, A. E. Erickson, C. T. Tsao, R. A. Revia, H. Kim, and M. Zhang, Electrospun uniaxially-aligned composite nanofibers as highly-efficient piezoelectric material, Ceramics International. 42, 2734–2740 (2016).
  • S. H. Ji, J. H. Cho, Y. H. Jeong, J-H. Paik, J. D. Yun, and J. S. Yun, Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications, Sensors and Actuators A. 247, 316–322 (2016).
  • M. S. S. Bafqi, R. Bagherzadeh, and M. Latifi, Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency, J Polym Res. 22, 130 (2015).
  • F. Mokhtari, M. Shamshirsaz, M. Latifi, and S. Asadi, Comparative evaluation of piezoelectric response of electrospun PVDF (polyvinilydine fluoride) nanofiber with various additives for energy scavenging application, The Journal of The Textile Institute (2016).
  • Alamusi, J. M. Xue, L. Wu, N. Hu, J. Qiu, C. Chang, S. Atobe, H. Fukunaga, T. Watanabe, Y. Liu, H. Ning, J. Li, Y. Li, and Y. Zhao, Evaluation of piezoelectric property of reduced graphene oxide(rGO)-poly(vinylidene fluoride) nanocomposites, Nanoscale 4, 7250 (2012).
  • J. S. Lee, K-Y. Shin, C. Kim, and J. Jang, Enhanced frequency response of a highly transparent PVDF-graphene based thin film acoustic actuator, Chem. Commun. 49, 11047 (2013).
  • M. M. Abolhasani, K. Shirvanimoghaddam, and M. Naebe, PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators, Composites Scienceand Technology 138, 49–56 (2017).
  • M. Sharma, V. Srinivas, G. Madras, and S. Bose, Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: assessing through piezoresponse force microscopy, RSC Adv. 6, 6251 (2016).
  • H. Dong, K. E. Strawhecker, J. F. Snyder, J. A. Orlicki, R. S. Reiner, and A. W. Rudie, Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization, Carbohydr. Polym. 87, 2488–2495 (2012).
  • J. Kim, and S. Yun, Discovery of cellulose as a smart material, Macromolecules 39, 4202–4206 (2006).
  • R. Fu, S. Chen, Y. Lin, S. Zhang, J. J, Q. Li, and Y. Gu, Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals, Materials Letters 187, 86–88 (2017).
  • C-T. Pan, C.-K. Yen, H-C. Wu, L. Lin, Y-S. Lu, J. C-C. Huang, and S-W. Kuo, Significant piezoelectric and energy harvesting enhancement of poly(vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning, J. Mater. Chem. A 3, 6835 (2015).
  • N. Weber, Y-S. Lee, S. Shanmugasundaram, M. Jaffe, and T. L. Arinzeh, Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds, Acta Biomaterialia 6, 3550–3556 (2010).
  • L. T. Beringer, X. Xu, W. Shih, W-H. Shih, R. Habas, and C. L. Schauer, An electrospun PVDF-TrFe fiber sensor platform for biological applications, Sensors and Actuators A 222, 293–300 (2015).
  • H-F. Guo, Z-S. Li, S-W. Dong, W-J. Chen, L. Deng, Y-F. Wang, D-J. Ying, Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications, Colloids and Surfaces B: Biointerfaces 96, 29–36 (2012).
  • A. Ciorba, L. Astolfi, C. Jolly, and A. Martini, Review paper: cochlear implants and inner ear based therapy, Eur. J. Nanomed 2 (2), 25–28 (2009).
  • N. Mukherjee, R. D. Roseman, and J. P. Willging, The piezoelectric cochlear implant: Concept, feasibility, challenges, and issues, J. Biomed. Mater. Res. 53 (2), 181–187 (2000).
  • C. Mota, M. Labardi, L. Trombi, L. Astolfi, M. D'Acunto, D. Puppi, G. Gallone, F. Chiellini, S. Berrettini, L. Bruschini, and S. Danti, Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation, Materials and Design. 122, 206–219 (2017).
  • J. Janata, M. Josowicz, and D. M. DeVaney, Chemical sensors, Anal. Chem. 66, 207R–228R (1994).
  • R. M. Crooks, and A. J. Ricco, New organic materials suitable for use in chemical sensor arrays, Acc. Chem. Res 31, 219–227 (1998).
  • R. Augustine, F. Sarry, N. Kalarikkal, S. Thomas, L. Badie, and D. Rouxel, Surface acoustic wave device with reduced Insertion loss by electrospinning P(VDF–TrFE)/ZnO nanocomposites, Nano-Micro Lett 8 (3), 282–290 (2016).
  • Z. L. Wang, J. Chen, and L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors, Energy Environ. Sci 8, 2250–2282 (2015).
  • X. Wang, S. Wang, Y. Yang, and Z. L. Wang, Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors, ACS Nano 9, 4553–4562 (2015).
  • N. Soin, T. H. Shah, S. C. Anand, J. Geng, W. Pornwannachai, P. Mandal, D. Reid, S. Sharma, R. L. Hadimani, D. V. Bayramol, and E. Siores, Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications, Energy Environ. Sci 7, 1670–1679 (2014).
  • C. Lee, and J. A. Tarbutton, Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications, Smart Mater. Struct 23, 095044 (2014).
  • S. Garain, S. Jana, T. K. Sinha, and D. Mandal, Design of In situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator, ACS Appl. Mater. Interfaces 8, 4532–4540 (2016).
  • X. Pan, Z. Wang, Z. Cao, S. Zhang, Y. He, Y. Zhang, K. Chen, Y. Hu, and H. Gu, A self-powered vibration sensor based on electrospun poly(vinylidene fluoride) nanofibres with enhanced piezoelectric response, Smart Mater. Struct 25, 105010 (2016).
  • N. Manikandan, S. Muruganand, K. Sriram, P. Balakrishnan, and A. S. Kumar, Fabrication of piezoelectric polyvinylidene fluoride (PVDF) polymer-based tactile sensor using electrospinning method, Nano Hybrids and Composites 12, 42–50 (2016).
  • Y. K. Fuh, and B. S. Wang, Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition, Nano Energy 30, 677–683 (2016).
  • Z. L. Wang, and J. H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Sci. 312, 242–246 (2006).
  • J. F. Scott, Applications of modern ferroelectrics, Sci. 315, 954–959 (2007).
  • T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang, and M. Zhu, Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers, Nano Energy 14, 226–235 (2015).
  • X. Ren, H. Fan, C. Wang, J. Ma, S. Lei, Y. Zhao, H. Li, and N. Zhao, Magnetic force driven noncontact telectromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy, Nano Energy 35, 233–241 (2017).
  • C. M. Wu, and M. H. Chou, Sound absorption of electrospun polyvinylidene fluoride/graphene membranes, European Polymer Journal 82, 35–45 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.