77
Views
1
CrossRef citations to date
0
Altmetric
Section G: Theory, Modeling and Simulations

Temperature and electric field control of the bandgap in electrotoroidic nanocomposites by large-scale ab initio methods

ORCID Icon, , , , &
Pages 93-105 | Received 05 Sep 2017, Accepted 20 Feb 2018, Published online: 11 Mar 2019

References

  • I. I. Naumov, L. Bellaiche, and H. Fu, Unusual phase transitions in ferroelectric nanodisks and nanorods, Nature 432 (7018), 737 (2004).
  • S. Prosandeev et al., Ferroelectric vortices and related configurations, in Nanoscale Ferroelectrics and Multiferroics: Key Processes Characterization Issues, and Nanoscale Effects, edited by M. Alguero, J. M. Gregg, and L. Mitoseriu (John Wiley & Sons, Ltd, 2016), pp. 701–728.
  • A. K. Yadav et al., Observation of polar vortices in oxide superlattices, Nature 530 (7589), 198 (2016).
  • A. Planes, T. Castan, and A. Saxena, Recent progress in the thermodynamics of ferrotoroidic materials, Multiferroic Mater. 1, 9 (2014).
  • S. Prosandeev et al., Natural optical activity and its control by electric field in electrotoroidic systems, Phys. Rev. B 87 (19), 195111 (2013).
  • A. R. Damodaran et al., Phase coexistence and electric-field control of toroidal order in oxide superlattices, Nat. Mater. 16 (10), 1003 (2017).
  • R. Walter et al., Electrical control of chiral phases in electrotoroidic nanocomposites, Adv. Electron. Mater. 2 (1), 1500218 (2016).
  • Y. Nahas et al., Discovery of stable skyrmionic state in ferroelectric nanocomposites, Nat. Commun. 6, 8542 (2015).
  • Z. Gui, L.-W. Wang, and L. Bellaiche, Electronic properties of electrical vortices in ferroelectric nanocomposites from large-scale ab initio computations, Nano Lett. 15 (5), 3224 (2015).
  • U. Ruediger et al., Negative domain wall contribution to the resistivity of microfabricated Fe wires, Phys. Rev. Lett. 80 (25), 5639 (1998).
  • M. Grujicic, G. Cao, and R. Singh, The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes, Appl. Surf. Sci. 211 (1–4), 166 (2003).
  • J. Seidel et al., Efficient photovoltaic current generation at ferroelectric domain walls, Phys. Rev. Lett. 107 (12), 126805 (2011).
  • N. Balke et al., Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3, Nat. Phys. 8 (1), 81 (2012).
  • W. Jia et al., GPU implementation of the linear scaling three dimensional fragment method for large scale electronic structure calculations, Comput. Phys. Commun. 211, 8 (2017).
  • L. Louis et al., Novel complex phenomena in ferroelectric nanocomposites, J. Phys: Condens. Matter 24 (40), 402201 (2012).
  • Y. Nahas, S. Prokhorenko, and L. Bellaiche, Frustration and self-ordering of topological defects in ferroelectrics, Phys. Rev. Lett. 116 (11), 117603 (2016).
  • F. Wang, I. Grinberg, and A. M. Rappe, Band gap engineering strategy via polarization rotation in perovskite ferroelectrics, Appl. Phys. Lett. 104 (15), 152903 (2014).
  • J. M. Rondinelli, S. J. May, and J. W. Freeland, Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37 (03), 261 (2012).
  • L. Walizer, S. Lisenkov, and L. Bellaiche, Finite-temperature properties of (Ba,Sr)TiO3 systems from atomistic simulations, Phys. Rev. B 73 (14), 144105 (2006).
  • L. Bellaiche, and D. Vanderbilt, Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites, Phys. Rev. B 61 (12), 7877 (2000).
  • I. Ponomareva et al., Terahertz dielectric response of cubic BaTiO3, Phys. Rev. B 77 (1), 012102 (2008).
  • N. Choudhury et al., Geometric frustration in compositionally modulated ferroelectrics. Nature 470 (7335), 513 (2011).
  • S. Lisenkov, and L. Bellaiche, Phase diagrams of BaTiO3/SrTiO3 superlattices from first principles, Phys. Rev. B 76 (2), 020102(R) (2007).
  • J. Hlinka et al., Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3, Phys. Rev. Lett. 101 (16), 167402 (2008).
  • L. Wang, Z. Zhao, and J. Meza, Linear-scaling three-dimensional fragment method for large-scale electronic structure calculations, Phys. Rev. B 77 (16), 165113 (2008).
  • L.-W. Wang, Parallel plane-wave pseudopotential ab initio package (2004). http://cmsn.lbl.gov/html/PEtot/PEtot.html.
  • L. Wang, and A. Zunger, Solving Schrödinger’s equation around a desired energy: application to silicon quantum dots, J. Chem. Phys. 100 (3), 2394 (1994).
  • S. Dag, S. Wang, and L. Wang, Large surface dipole moments in ZnO nanorods, Nano Lett. 11 (6), 2348 (2011).
  • B. Lee, and L.-W. Wang, Electronic structure of ZnTe:O and its usability for intermediate band solar cell, Appl. Phys. Lett. 96 (7), 071903 (2010).
  • J. Kang et al., Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13 (11), 5485 (2013).
  • N. Nagaosa, and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol. 8 (12), 899 (2013).
  • S. Piskunov et al., Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study, Comput. Mater. Sci. 29 (2), 165 (2004).
  • N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976).
  • H. W. Eng et al., Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family, J. Solid State Chem. 175 (1), 94 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.