130
Views
4
CrossRef citations to date
0
Altmetric
Articles

Yttrium iron garnet – lead-barium titanate particulate multiferroic composites

, &
Pages 131-142 | Received 29 Dec 2017, Accepted 18 Apr 2018, Published online: 20 Nov 2018

References

  • J. Peng et al., Electrical, magnetic, and direct and converse magnetoelectric properties of (1 − x)Pb(Zr0.52Ti0.48)O3− (x)CoFe2O4 (PZT–CFO) magnetoelectric composites. J. Magn. Magn. Mater. 378, 298 (2015).
  • I. V. Lisnevskaya, K. V. Myagkaya, and I. A. Bobrova, Lithium sodium potassium niobate-modified nickel ferrite lead-free magnetoelectric composite ceramics. Ceram. Int. 41 (10), 15217 (2015).
  • M. M. Selvi et al., Magnetodielectric properties of CoFe2O4–BaTiO3 core–shell nanocomposite. J. Magn. Magn. Mater. 369, 155 (2014).
  • Z. V. Gabbasova et al., BiRFeO3 (R = rare earth): a family of novel magnetoelectrics. Phys. Lett. Sect. A Gen. Solid State Phys. 158 (9), 491 (1991).
  • J. Boomgaard, D. R. et al., An in situ grown eutectic composite material, Part 1. J. Mater. Sci. 9 (10), 1705 (1974).
  • A. M. J. G. Run, D. R. Terrell, and J. H. Scholing, An in situ grown eutectic magnetoelectric composite material, Part 2. J. Mater. Sci. 9 (10), 1710 (1974).
  • L. Li, X. M. Chen, and H. Y. Zhu, Enhanced magnetoelectric properties of Terfenol-D disk/Pb(Zr,Ti)O3 ring multiferroic heterostructures with Pb(Zr,Ti)O3 piezoelectric ring poled radially. J. Alloys Compd. 526, 116 (2012).
  • S.-H. Zhang et al., Enhancing magnetic field sensitivity and giant converse magnetoelectric effect in laminate composite of Terfenol-D and multilayer piezoelectric vibrator. J. Alloys Compd. 590, 46 (2014).
  • F. Fang et al., In situ domain structure observation and giant magnetoelectric coupling for PMN-PT/Terfenol-D multiferroic composites. J. Am. Ceram. Soc. 97 (8), 2511 (2014).
  • P. T. Phong, et al., Enhanced low-field-magnetoresistance and electro-magnetic behavior of La0.7Sr0.3MnO3/BaTiO3 composites. Phys. B Condens. Matter. 407 (18), 3774 (2012).
  • I. G. Deac, and I. Balasz, Electroresistance, magnetocapacitance and magnetotransport properties of La0.55Ca0.45MnO3/BaTiO3 composite. Mater. Chem. Phys. 136 (2–3), 850 (2012).
  • C. Nayek, K. K. Sahoo, and P. Murugavel, Magnetoelectric effect in La0.7Sr0.3MnO3–BaTiO3 core–shell nanocomposite. Mater. Res. Bull. 48 (3), 1308 (2013).
  • D. Varshney, and M. A. Dar, Structural and magneto-transport properties of (1 − x)La0.67Sr0.33MnO3 (LSMO) + (x)BaTiO3 (BTO) composites. J. Alloys. Compd. 619, 122 (2015).
  • Z. H. Tang et al., Microstructure, magnetoelectric properties and leakage mechanisms of La0.7Ca0.3MnO3/Bi3.15Nd0.85TiO3 composite thin films. Solid. State Sci. 17, 35 (2013).
  • J. Kulawik, D. Szwagierczak, and P. Guzdek, Magnetic, magnetoelectric and dielectric behavior of CoFe2O4–Pb(Fe1/2Nb1/2)O3 particulate and layered composites. J. Magn. Magn. Mater. 324 (19), 3052 (2012).
  • J. K. Juneja et al., Enhancement in magnetoelectric coupling in PZT based composites. Ceram. Int. 41, 6108 (2015).
  • H. Yang et al., Simultaneous enhancement of electrical and magnetoelectric effects in BaTiO3–Bi0.5Na0.5TiO3/CoFe2O4 laminate composites. J. Alloys Compd. 646, 1104 (2015).
  • H. J. L. Clabel et al., Magnetoelectric properties of laminated La0.7Ba0.3MnO3–BaTiO3 ceramic composites. J. Magn. Magn. Mater. 364, 18 (2014).
  • A. S. Kumar et al., Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater. 418, 294 (2016).
  • K. K. Patankar et al., AC conductivity and magnetoelectric effect in CuFe1.6Cr0.4O4–BaTiO3 composite ceramics. Mater. Chem. Phys. 65 (1), 97 (2000).
  • L. Weng et al., Synthesis of lead zirconate titanate–cobalt ferrite magnetoelectric particulate composites via an ethylenediaminetetraacetic acid–citrate gel process. Scr. Mater. 56 (6), 465 (2007).
  • H. Yang, G. Zhang, and Y. Lin, Enhanced magnetoelectric properties of the laminated BaTiO3/CoFe2O4 composites. J. Alloys Compd. 644, 390 (2015).
  • P. Guzdek, The magnetostrictive and magnetoelectric characterization of Ni0.3Zn0.62Cu0.08Fe2O4–Pb(FeNb)0.5O3 laminated composite. J. Magn. Magn. Mater. 349, 219 (2014).
  • Q. Jiang et al., Magneto-Electric Properties of Multiferroic Pb(Zr0.52Ti0.48)O3–NiFe2O4 Nanoceramic Composites. J. Am. Ceram. Soc. 94 (8), 2311 (2011).
  • P. A. Jadhav et al., Synthesis and magnetoelectric properties of y (Ni0.3Cu0.4Zn0.3Fe2O4) + (1 − y) [50% BaTiO3+50% PZT] ME composites. J. Alloys Compd. 490 (1–2), 195 (2010).
  • C. P. Fernandez et al., In situ sol–gel co-synthesis under controlled pH and microwave sintering of PZT/CoFe2O4 magnetoelectric composite ceramics. Ceram. Int. 42 (2), 3239 (2016).
  • A. Hanumaiah et al., Dielectric behaviour and magnetoelectric effect in cobalt ferrite-barium titanate composites. Bull. Mater. Sci. 17 (4), 405 (1994).
  • J. Boomgaard, and R. A. J. Born, A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn)Fe2O4. J. Mater. Sci. 13 (7), 1538 (1978).
  • Y. Lin et al., Excellent piezoelectric and magnetoelectric properties of the (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3/Ni0.37Cu0.20Zn0.43Fe1.92O3.88 laminated composites. J. Alloys Compd. 692, 86 (2017).
  • M. Etier et al., The direct and the converse magnetoelectric effect in multiferroic cobalt ferrite–barium titanate ceramic composites. J. Am. Ceram. Soc. 99 (11), 3623 (2016).
  • K. C. Verma, and R. K. Kotnala, Nanostructural and lattice contributions to multiferroism in NiFe2O4/BaTiO3. Mater. Chem. Phys. 174, 120 (2016).
  • H. Zhang, and P. Du, Ferroelectricity and ferromagnetism in fine-grained multiferroic BaTiO3/(Ni0.5Zn0.5)Fe2O4 composites prepared by a novel hybrid process. Solid State Commun. 149 (3–4), 101 (2009).
  • G. V. Duong, and R. Groessinger, Effect of preparation conditions on magnetoelectric properties of CoFe2O4–BaTiO3 magnetoelectric composites. J. Magn. Magn. Mater. 316 (2), e624 (2007).
  • A. R. Iordan et al., In situ preparation of CoFe2O4–Pb(ZrTi)O3 multiferroic composites by gel-combustion technique. J. Eur. Ceram. Soc. 29 (13), 2807 (2009).
  • J. V. Korickiy, Spravochnik po elektrotekhnicheskim materialam (An enchiridion of electrotechnical materials). Moskow Energoatomizdat 3, 156 (1988).
  • T. G. Lupeiko, I. V. Lisnevskaya, and A. V. Chernyshev, Reaction between lead zirconate titanate and yttrium iron garnet. Inorg. Mater. 36 (1), 84 (2000).
  • I. V. Lisnevskaya et al., Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites. J. Magn. Magn. Mater. 405, 62 (2016).
  • H. Yang et al., Electrical, magnetic and magnetoelectric properties of BaTiO3/BiY2Fe5O12 particulate composites. Ceram. Int. 41 (5), 7227 (2015).
  • F. Wang et al., Low temperature sintering and magnetoelectric properties of laminated BaTiO3/BiY2Fe5O12 composites. J. Alloys Compd. 632, 460 (2015).
  • G. Schileo et al., Yttrium iron garnet/barium titanate multiferroic composites. J. Am. Ceram. Soc. 99 (5), 1609 (2016).
  • I. V. Lisnevskaya et al., Interfacial reactions and properties of Y3Fe5O12/Ba1−xPbxTiO3 composites. Inorg. Mater. 42 (10), 1147 (2006).
  • L. P. M. Bracke, and R. G. Vliet, A broadband magneto-electric transducer using a composite material. Int. J. Electron. 51 (3), 255 (1981).
  • B. Yaffe, W. R. Cook, and H. Yaffe, Piezoelectric ceramics (Academic Press, London and New York 1971).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.