172
Views
3
CrossRef citations to date
0
Altmetric
Articles

New trends in fundamental research due to the spontaneous flexoelectric effect in nanosized and bulk ferroelectrics

, &
Pages 67-88 | Accepted 23 Aug 2017, Published online: 11 Feb 2019

References

  • M. D. Glinchuk, A. V. Ragulya, and V. A. Stephanovich, Nanoferroics. (Springer, Dordrecht, 2013), p. 378.
  • V. S. Mashkevich, and K. B. Tolpygo, The interaction of vibrations of nonpolar crystals with electric fields. Zh.Eksp.Teor.Fiz. 31, 520 (1957) [Sov.Phys. JETP 4, 455 (1957).
  • A. K. Tagantsev, Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B. 34 (8), 5883 (1986).
  • P. Zubko, G. Catalan, and A. K. Tagantsev, Flexoelectric Effect in Solids. Annu. Rev. Mater. Res. 43 (1), 387 (2013).
  • P. V. Yudin, and A. K. Tagantsev, Fundamentals of flexoelectricity in solids. Nanotechnology. 24 (43), 432001 (2013).
  • S. V. Kalinin, and A. N. Morozovska, Multiferroics: Focusing the light on flexoelectricity (Comment). Nat. Nanotech. 10 (11), 916 (2015). doi:10.1038/nnano.2015.213
  • A. K. Tagantsev, L. Eric Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films. (Springer, New York, 2010)
  • G. Catalan, L. J. Sinnamon, and J. M. Gregg, The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys Condens. Matter. 16 (13), 2253 (2004).
  • M. S. Majdoub, R. Maranganti, and P. Sharma, Understanding the origins of the intrinsic dead layer effect in nanocapacitors. Phys. Rev. B 79 (11), 115412 (2009).
  • M. S. Majdoub, P. Sharma, and T. Cagin, Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B. 77 (12), 125424 (2008).
  • R. Maranganti, and P. Sharma, Atomistic determination of flexoelectric properties of crystalline dielectrics. Phys. Rev. B. 80 (5), 054109 (2009).
  • G. Catalan et al., Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10 (12), 963 (2011).
  • E. A. Eliseev et al., Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79 (16), 165433 (2009).
  • A. Kholkin et al., Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy. Appl. Phys. Lett. 93 (22), 222905 (2008).
  • R. Tararam et al., Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys. 110 (5), 052019 (2011).
  • S. M. Kogan, Piezoelectric effect under an inhomogeneous strain and an acoustic scattering of carriers of current in crystals. Solid State Phys., 5 (10), 2829 (1963).
  • W. Ma, and L. E. Cross, Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82 (19), 3293 (2003).
  • P. Zubko et al. , Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99 (16), 167601 (2007).
  • W. Ma, and L. E. Cross, Flexoelectricity of barium titanate. Appl. Phys. Lett. 88 (23), 232902 (2006).
  • I. Ponomareva, A. K. Tagantsev, and L. Bellaiche, Finite-temperature flexoelectricity in ferroelectric thin films from first principles. Phys. Rev. B. 85 (10), 104101 (2012).
  • J. Hong, and D. Vanderbilt, First-principles theory of frozen-ion flexoelectricity. Phys. Rev. B. 84 (18), 180101(R) (2011).
  • P. V. Yudin, R. Ahluwalia, and A. K. Tagantsev, Upper bounds for flexocoupling coefficients in ferroelectrics. Appl. Phys. Lett. 104 (8), 082913 (2014).
  • A. Biancoli et al., Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. Nat. Mater. 14 (2), 224 (2015).
  • A.K. Tagantsev, and P.V. Yudin (Eds.), Flexoelectricity in solids: from theory to applications. (World Scientific, Singapore, 2016)
  • A. K. Tagantsev et al., The origin of antiferroelectricity in PbZrO3. Nat. Commun. 4, 2229 (2013).
  • A. Y. Borisevich et al., Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nat. Commun. 3 (1), 775 (2012).
  • E. A. Eliseev et al., Universal emergence of spatially-modulated structures induced by flexo-antiferrodistortive coupling in multiferroics. Phys. Rev. B. 88 (22), 224105 (2013).
  • P. Henning, and E. K. H. Salje, Flexoelectricity, incommensurate phases and the Lifshitz point. J. Phys Condens. Matter. 28 (7), 075902 (2016).
  • M. Stengel, Unified ab initio formulation of flexoelectricity and strain-gradient elasticity. Phys. Rev. B. 93 (24), 245107 (2016).
  • W. Ma, and L. E. Cross, Flexoelectric effect in ceramic lead zirconate titanate. Appl. Phys. Lett. 86 (7), 072905 (2005).
  • See Chapter 6, Flexoelectricity and phonon spectra, in The monograph [Flexoelectricity in Solids: From Theory to Applications], edited by A. K. Tagantsev, and P. V. Yudin (World Scientific, New Jersey, 2016).
  • M. Stengel, Flexoelectricity from density-functional perturbation theory. Phys. Rev. B. 88 (17), 174106 (2013).
  • A. Kvasov, and A. K. Tagantsev, Dynamic flexoelectric effect in perovskites from first-principles calculations. Phys. Rev. B. 92 (5), 054104 (2015).
  • See Chapter 2 First-principles of the flexoelectricity by stengel and Vanderbilt, in The monograph [Flexoelectricity in Solids: From Theory to Applications], edited by. A. K. Tagantsev, and P. V. Yudin (World Scientific, New Jersey, 2016).
  • A. N. Morozovska, and M. D. Glinchuk, Flexo-chemo effect in nanoferroics as a source of critical size disappearence at size-induced phase transitions. J. Appl. Phys. 119 (9), 094109 (2016).
  • E. A. Eliseev et al., Lost surface waves in nonpiezoelectric solids. Phys. Rev. B. 96 (4), 045411 (2017).
  • A. N. Morozovska et al., Flexocoupling impact on the generalized susceptibility and soft phonon modes in the ordered phase of ferroics. Phys. Rev. B. 92 (9), 094308 (2015).
  • A. N. Morozovska et al., The influence of elastic strain gradient on the upper limit of flexocoupling strength, spatially-modulated phases and soft phonon dispersion in ferroics. Phys. Rev. B. 94 (17), 174112 (2016).
  • A. N. Morozovska et al., Flexocoupling impact on the size effects of piezo- response and conductance in mixed-type ferroelectrics-semiconductors under applied pressure. Phys. Rev. B. 94 (17), 174101 (2016).
  • I. S. Vorotiahin et al., Flexocoupling impact on the kinetics of polarization reversal. Phys. Rev. B. 95 (1), 014104 (2017). doi: 10.1103/PhysRevB.95.014104
  • I. S. Vorotiahin et al., Tuning the polar states of ferroelectric films via surface charges and flexoelectricity. Acta Materialia 137 (15), 85 (2017).
  • A. Eugene et al., Defect driven flexo-chemical coupling in thin ferroelectric films. Phys. Rev. B 97 (2), 024102 (2018).
  • G. Catalan, and J. F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21 (24), 2463 (2009).
  • X. Zhang, A. M. Sastry, and W. Shyy, Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J. Electrochem. Soc. 155 (7), A542 (2008).
  • D. A. Freedman, D. Roundy, and T. A. Arias, Elastic effects of vacancies in strontium titanate: Short-and long-range strain fields, elastic dipole tensors, and chemical strain. Phys. Rev. B. 80 (6), 064108 (2009).
  • T. Ohnishi et al., Defects and transport in complex oxide thin films. J. Appl. Phys. 103 (10), 103703 (2008).
  • C. M. Brooks et al., Growth of homoepitaxial SrTiO3 thin films by molecular-beam epitaxy. Appl. Phys. Lett. 94 (16), 162905 (2009).
  • P. S. Sankara Rama Krishnan et al., Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. J. Appl. Phys. 115 (5), 054103 (2014).
  • A. N. Morozovska et al., Defect thermodynamics and kinetics in thin strained ferroelectric films: The interplay of possible mechanisms. Phys. Rev. B. 89 (5), 054102 (2014).
  • M. E. Lines, and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).
  • D. Yadlovker, and S. Berger, Uniform orientation and size of ferroelectric domains. Phys. Rev. B. 71 (18), 184112 (2005).
  • D. Yadlovker, and S. Berger, Reversible electric field induced nonferroelectric to ferroelectric phase transition in single crystal nanorods of potassium nitrate. Appl. Phys. Lett. 91 (17), 173104 (2007).
  • D. Yadlovker, and S. Berger, Nucleation and growth of single crystals with uniform crystallographic orientation inside alumina nanopores. J. Appl. Phys. 101 (3), 034304 (2007).
  • M. D. Glinchuk, and A. N. Morozovskaya, Effect of surface tension and depolarization field on ferroelectric nanomaterials properties. Phys. Stat. Sol. (b) 238 (1), 81 (2003).
  • A. N. Morozovska, M. D. Glinchuk, and E. A. Eliseev, Phase transitions induced by confinement of ferroic nanoparticles. Phys. Rev. B. 76 (1), 014102 (2007).
  • A. N. Morozovska et al., Ferroelectricity and ferromagnetism in EuTiO3 nanowires. Phys. Rev. B. 84 (20), 205403 (2011).
  • V. A. Shchukin, and D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71 (4), 1125 (1999).
  • J. Zhu et al., Phase coexistence evolution of nano BaTiO3 as function of particle sizes and temperatures. J. Appl. Phys. 112 (6), 064110 (2012).
  • V. I. Marchenko, and A. Y. Parshin, Elastic properties of crystal surfaces. Zh. Eksp. Teor. Fiz 79 (1), 257 (1980). [Sov. Phys. JETP 52, 129 (1980)].
  • N. Hoa et al., Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B. 73 (13), 132404 (2006).
  • N. Hoa Hong, Magnetism due to defects/oxygen vacancies in HfO2 thin films. Phys. Stat. Sol. (c) 4 (3), 1270 (2007).
  • G. S. Chang et al., Oxygen vacancy induced ferromagnetism in undoped SnO2. Phys. Rev. B 85 (16), 165319 (2012).
  • P.-G. De Gennes, Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827 (1985).
  • L. Rayleigh, On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc S1–17 (1), 4 (1885).
  • Z. Yu, and S. Boseck, Scanning acoustic microscopy and its applications to material characterization. Rev. Mod. Phys. 67 (4), 863 (1995).
  • K. Länge, B. E. Rapp, and M. Rapp, Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391 (5), 1509 (2008).
  • M. M. de Lima Jr, and P. V. Santos, Modulation of photonic structures by surface acoustic waves. Rep. Prog. Phys. 68 (7), 1639 (2005).
  • A. N. Alexeyev, and D. V. Roshchupkin, Diffraction of surface acoustic waves on the zigzag domain wall in a Gd2(MoO4)3 crystal. Appl. Phys. Lett. 68 (2), 159 (1996).
  • J. Schiefele et al., Coupling light into graphene plasmons through surface acoustic waves. Phys. Rev. Lett. 111 (23), 237405 (2013).
  • Y. Tanaka, and S-I Tamura, Surface acoustic waves in two-dimensional periodic elastic structures. Phys. Rev. B. 58 (12), 7958 (1998).
  • E. S. K. Young et al., Subterahertz acoustical pumping of electronic charge in a resonant tunneling device. Phys. Rev. Lett. 108 (22), 226601 (2012).
  • J.-C. Beugnot et al., Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat. Commun. 5 (1) (2014).
  • J. L. Bleustein, A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13 (12), 412 (1968).
  • V.Y. Gulyaev , Electroacoustic surface waves in solids. Zh.Eksp. Teor. Fiz., Pis’ma Red. 9, 63 (1969).
  • C. Eckl, A. P. Mayer, and A. S. Kovalev, Do surface acoustic solitons exist? Phys. Rev. Lett. 81 (5), 983 (1998).
  • C. Taillan, N. Combe, and J. Morillo, Nanoscale self-organization using standing surface acoustic waves. Phys. Rev. Lett. 106 (7), 076102 (2011).
  • M. Romeo, Surface waves in hexagonal micropolar dielectrics. Int. J. Solids Struct. 87, 39 (2016).
  • Y. Yamada, and G. Shirane, Neutron scattering and nature of the soft optical phonon in SrTiO3. J. Phys. Soc. Jpn. 26 (2), 396 (1969).
  • W. Cochran, Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett. 3 (9), 412 (1959).
  • G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, Soft ferroelectric modes in lead titanate. Phys. Rev. B. 2 (1), 155 (1970).
  • W. Cochran, Dynamical, scattering and dielectric properties of ferroelectric crystals. Adv. Phys. 18 (72), 157 (1969).
  • G. Shirane, and Y. Yamada, Lattice-dynamical study of the 110 K phase transition in SrTiO3. Phys. Rev. 177 (2), 858 (1969).
  • R. Currat et al., Inelastic neutron scattering study of an harmonic interactions in orthorhombic KNbO3. Phys. Rev. B. 40 (16), 10741 (1989).
  • I. Etxebarria et al., Inelastic neutron scattering investigation of external modes in incommensurate and commensurate A2BX4 materials. J. Phys Condens. Matter. 4 (44), 8551 (1992).
  • J. Hlinka et al., Dynamical properties of the normal phase of betaine calcium chloride dihydrate. I. Experimental results. J. Phys. Condens. Matter. 8 (43), 8207 (1996).
  • J. Hlinka et al., Origin of the “waterfall” effect in phonon dispersion of relaxor perovskites. Phys. Rev. Lett. 91 (10), 107602 (2003).
  • J. D. Axe, J. Harada, and G. Shirane, Anomalous acoustic dispersion in centrosymmetric crystals with soft optic phonons. Phys. Rev. B. 1 (3), 1227 (1970).
  • V. Goian et al., Antiferrodistortive phase transition in EuTiO3. Phys. Rev. B. 86 (5), 054112 (2012).
  • J.-W. Kim et al., Emergent superstructural dynamic order due to competing antiferroelectric and antiferrodistortive instabilities in bulk EuTiO3. Phys. Rev. Lett. 110 (2), 027201 (2013).
  • R. G. Burkovsky et al., Lattice dynamics and antiferroelectricity in PbZrO 3 tested by x-ray and Brillouin light scattering. Phys. Rev. B. 90 (14), 144301 (2014).
  • J. Hlinka, I. Gregora, and V. Vorlıcek, Complete spectrum of long-wavelength phonon modes in Sn2P2S6 by Raman scattering. Phys. Rev. B. 65 (6), 064308 (2002).
  • A. Kohutych et al., Sound behavior near the Lifshitz point in proper ferroelectrics. Phys. Rev. B. 82 (5), 054101 (2010).
  • A. Kohutych et al., Acoustic attenuation in ferroelectric Sn2P2S6 crystals. Open Phys. 8 (6), 905 (2010). doi:10.2478/s11534-010-0016-x
  • Y. M. Vysochanskii et al., Tricritical behavior of Sn2P2S6 ferroelectrics at hydrostatic pressure. Ferroelectrics. 399 (1), 83 (2010). http://dx.doi.org/10.1080/00150193.2010.489866
  • R. M. Yevych et al., Lattice instability at phase transitions near the Lifshitz point in proper monoclinic ferroelectrics. J. Phys Condens. Matter. 18 (16), 4047 (2006). doi:10.1088/0953-8984/18/16/011
  • R. A. Cowley, Lattice dynamics and phase transitions of strontium titanate. Phys. Rev. 134 (4A), A981 (1964).
  • A. Bussmann-Holder, H. Büttner, and A. R. Bishop, Coexistence of polar order and local domain dynamics in ferroelectric perovskites: the case of SrTi18O3. Ferroelectrics 363 (1), 73 (2008). http://dx.doi.org/10.1080/00150190802019296
  • A. Bussmann-Holder, Electron-phonon-interaction-driven anharmonic mode-mode coupling in ferroelectrics: The origin of acoustic-mode anomalies. Phys. Rev. B. 56 (17), 10762 (1997).
  • L. D. Landau, and E. M. Lifshitz, Theory of Elasticity. Theoretical Physics, Vol. 7, (Butterworth-Heinemann, Oxford, UK, 1998).
  • G. A. Smolenskii et al., Ferroelectrics and Related Materials (Gordon and Breach, New York, 1984).
  • S. W. H. Eijt et al., Soft modes and phonon interactions in Sn2P2S6 studied by neutron scattering. Eur. Phys. J. B Condens. Matter Complex Syst. 5 (2), 169 (1998).
  • S. W. H. Eijt et al., Soft modes and phonon interactions in Sn2P2Se6 studied by means of neutron scattering. J. Phys Condens. Matter. 10 (22), 4811 (1998).
  • C. Kappler, and M. B. Walker. Symmetry-based model for the modulated phases of betaine calcium chloride dihydrate. Phys. Rev. B. 48 (9), 5902 (1993).
  • A. N. Morozovska, M. D. Glinchuk, E. A. Eliseev, and Y. M. Vysochanskii, Flexocoupling-induced soft acoustic modes and the spatially modulated phases in ferroelectrics. Phys. Rev. B. 96 (9), 094111 (2017).
  • V. A. Golovko, An exact solution to the equations of the phenomenological theory of the incommensurate phase. Zh. Eksp. Teor. Fiz. 87, 1092 (1984).
  • A. P. Levanyuk, S. A. Minyukov, and A. Cano, Universal mechanism of discontinuity of commensurate-incommensurate transitions in three-dimensional solids: Strain dependence of soliton self-energy. Phys. Rev. B. 66 (1), 014111 (2002).
  • Y. M. Vysochanskii, and V. Y. Slivka, Lifshitz point on the state diagram of ferroelectric. Uspekhi Fizicheskikh. Nauk. 162 (2), 139 (1992).
  • K. Z. Rushchanskii et al., Observation of nonequilibrium behavior near the Lifshitz point in ferroelectrics with incommensurate phase. Phys. Rev. B. 93 (1), 014101 (2016).
  • J. Narvaez, and G. Catalan, Origin of the enhanced flexoelectricity of relaxor ferroelectrics. Appl. Phys. Lett. 104 (16), 162903 (2014).
  • L. M. Garten, and S. Trolier-McKinstry, Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate. J. Appl. Phys. 117 (9), 094102 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.