238
Views
6
CrossRef citations to date
0
Altmetric
Articles

Low temperature synthesis of complex solid solution (1-x)Bi0.5Na0.5TiO3–xBaTiO3 system: BT induced structural and dielectric anomalies in NBT

&
Pages 112-132 | Received 27 Apr 2018, Accepted 17 Sep 2018, Published online: 13 May 2019

References

  • M. Abazari , et al. , Dielectric and piezoelectric properties of lead-free (Bi, Na)TiO3-based thin films. Appl. Phys. Lett. 96 (8), 082903 (2010). http://dx.doi.org/10.1063/1.3309706.
  • M. Chandrasekhar , and P. Kumar . Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramic for actuator and energy storage applications. Ceram. Int. 41 (4), 5574 (2015). http://dx.doi.org/10.1016/j.ceramint.2014.12.136.
  • H. Nagata . Electrical properties and tracer diffusion of oxygen in some Bi-based lead-free piezoelectric ceramics. J. Ceram. Soc. Japan 116 (1350), 271 (2008). https://www.jstage.jst.go.jp/article/jcersj2/116/1350/116_1350_271/_pdf
  • C. Zhou , and X. Liu . Dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution of Bi1/2Na1/2TiO3- Bi(Mg2/3Nb1/3)O3 . J. Mater. Sci. 43 (3), 1016 (2008). http://dx.doi.org/10.1007/s10853-007-2246-x.
  • D. Schütz , et al. , Lone-pair-induced covalency as the cause of temperature and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater. 22 (11), 2285 (2012)., http://dx.doi.org/10.1002/adfm.201102758.
  • R. Zuo , et al. , Influence of A-site nonstoichiometry on sintering, microstructure and electrical properties of (Bi0.5Na0.5)TiO3 ceramics. Mater. Chem. Phys. 110 (2–3), 311 (2008). http://dx.doi.org/10.1016/j.matchemphys.2008.02.007
  • T. Takenaka , K. Maruyama , and K. Sakata . (Bi1/2Na1/2)TiO3-BaTiO3 system for lead free piezoelectric ceramics. Jpn. J. Appl. Phys. 30 (Part 1, No. 9B), 2236 (1991). .
  • B. J. Chu , et al. , Electrical properties of Na1/2Bi1/2TiO3BaTiO3 ceramics. J. Eur. Ceram. Soc. 22 (13), 2115 (2002). https://doi.org/10.1016/S0955-2219(02)00027-4
  • T. Oh . Dielectric relaxor properties in the system of (Na1-xKx)1/2Bi1/2TiO3 ceramics. Jpn. J. Appl. Phys. 45, 5138 (2006). https://dx.doi.org/10.1143/JJAP.45.5138.
  • T. Wada , et al. , Dielectric and piezoelectric properties of (A0.5Bi0.5)TiO3–ANbO3 (A = Na, K) systems. Jpn. J. Appl. Phys. 40 (Part 1, No. 9B), 5703 (2001). https://doi.org/10.1143/JJAP.40.5703.
  • Y. Hiruma , H. Nagata , and T. Takenaka . Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. J. Appl. Phys. 104 (12), 124106 (2008). http://dx.doi.org/10.1063/1.3043588.
  • E. Venkata Ramana , et al. , Structure and ferroelectric studies of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoelectric ceramics. Mater. Res. Bull. 48 (10), 4395 (2013). http://dx.doi.org/10.1016/j.materresbull.2013.05.108.
  • A. Kundu , and A. N. Soukhojak . Ba-Zr codoped sodium bismuth titanate by novel alkoxyless wet chemical route: Processing and electromechanical behavior. Appl. Phys. A 82 (2), 309 (2006). http://dx.doi.org/10.1007/s00339-005-3295-0.
  • K. Kanie , et al. , Synthesis of bismuth sodium titanate fine particles with different shapes by the gel-sol method. Mater. Trans. 48 (8), 2174 (2007). DOI: 10.2320/matertrans.MRA2007043.
  • P. Pookmanee , et al. , Effect of sintering temperature on microstructure of hydrothermally prepared bismuth sodium titanate ceramics. J. Eur. Ceram. Soc. 24 (2), 517 (2004). http://dx.doi.org/10.1016/S0955-2219(03)00197-3.
  • M. M. Lencka , M. Oledzka , and R. E. Riman . Hydrothermal synthesis of sodium and potassium Bismuth titanate. Chem. Mater. 12 (5), 1323 (2000). http://10.1021/cm9906654.
  • M. Cernea , et al. , Dielectric and piezoelectric behaviours of NBT-BT 0.05 processed by sol–gel method. J. Eur. Ceram. Soc. 32 (1), 133 (2012). DOI: 10.1016/j.jeurceramsoc.2011.07.038
  • X. Fang , et al. , Preparation, dielectric and ferroelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 thin films by a sol–gel process. J. Sol-Gel Sci. Technol. 58 (1), 1 (2011). DOI 10.1007/s10971-010-2346-y.
  • S. Sayyed , et al. , Structural and dielectric anomalies near the MPB. RSC Adv. 5 (63), 50644 (2015). http://dx.doi.org/10.1039/C5RA05617A.
  • E. Pakizeh , M. Moradi , and A. Ahmadi . XRD peak broadening, lattice strain, ferroelectric domains orientation and band-gap energy analysis of PZT sub-micron powders prepared via sol-gel method at different pH. J. Phys. Chem. Solids 75(2), 174 (2014). http://dx.doi.org/10.1016/j.jpcs.2013.09.005.
  • Q. Xu , et al. , Synthesis of (Na0.5Bi0.5)TiO3 and (Na0.5Bi0.5)0.92Ba0.08TiO3 powders by a citrate method. J. Mater. Sci. 41 (18), 6146 (2006). http://dx.doi.org/10.1007/s10853-006-0572-z.
  • J. Hao , et al. , Synthesis of (Bi0.5Na0.5)TiO3 nanocrystalline powders by stearic acid gel method. Mater. Chem. Phys. 90 (2–3), 282 (2005). http://dx.doi.org/10.1016/j.matchemphys.2004.05.019.
  • M. Chen , et al. , Structure and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28 (4), 843 (2008).
  • J. Suchanicz , et al. , Structural and dielectric properties of (Na0.5Bi0.5)0.70Ba0.30TiO3 ceramics. J. Eur. Ceram. Soc. 23 (10), 1559 (2003). https://doi.org/10.1016/S0955-2219(02)00406-5.
  • C. Xu , D. Lin , and K. W. Kwok . Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10 (7), 934 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.11.003
  • W. Ge , et al. , Raman spectroscopic study of Na1/2Bi1/2TiO3-x%BaTiO3 single crystals as a function of temperature and composition. Appl. Phys. Lett. 95, 162903 (2009). doi: http://dx.doi.org/10.1063/1.3587236.
  • J. Kreisel , et al. , An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 (0≤ x ≤ 1) solid solution. J. Phys: Condens. Matter 12 (14), 3267 (2000). https://dx.doi.org/10.1088/0953-8984/12/14/305
  • B. Parija , et al. , Structure, microstructure and dielectric properties of 100-x(Bi0.5Na0.5)TiO3–x(SrTiO3) composites ceramics. Appl. Phys. A 109 (3), 715 (2012). http://dx.doi.org/10.1007/s00339-012-7105-1.
  • R. N. P. Choudhary , et al. , Effect of La-substitution on structural and dielectric properties of Bi(Sc1/2Fe1/2)O3 ceramics. J. Alloys Compd. 437 (1–2), 220 (2007). https://doi.org/10.1016/j.jallcom.2006.07.077.
  • S. Sen , and R. N. P. Choudhary . Effect of doping Ca ions on structural and electrical properties of Ba(Zr0.05Ti0.95)O3 electro ceramics. J. Mater Sci: Mater. Electron. 15, 671 (2004).
  • A. K. Singh , et al. , Dielectric properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 91 (10), 6626 (2002). http://dx.doi.org/10.1063/1.1470256.
  • V. S. Puli , et al. , Structure, dielectric, ferroelectric, and energy density properties of (1-x)BZT–xBCT ceramic capacitors for energy storage applications. J. Mater. Sci. 48 (5), 2151 (2013). http://dx.doi.org/10.1007/s10853-012-6990-1
  • Y. J. Li , et al. , Maxwell–Wagner characterization of dielectric relaxation in Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6 composite. Solid State Commun. 137 (3), 120 (2006). http://dx.doi.org/10.1016/j.ssc.2005.11.017
  • Y. Chen , et al. , Structural and Dielectric Properties of Cerium modified BiScO3-PbTiO3 Piezoelectric Ceramics, International Conference on Materials Engineering and Information Technology Applications (MEITA 2015).
  • C. J. Walsh . Thesis submitted to B.S. Alfred University Chapter III, 53, 2002.
  • G. A. Smolenskii , and V. A. Isupov . Phase changes of certain solid solutions having electrical properties of Rachelle salt. Dokl Akad Nank (USSR) 96, 53 (1954).
  • B. Parija , et al. , Morphotropic phase boundary and electrical properties of 1-x[Bi0.5Na0.5]TiO3–xBa[Zr0.25Ti0.75]O3 lead-free piezoelectric ceramics. Ceram. Int. 39 (5), 4877 (2013). http://dx.doi.org/10.1016/j.ceramint.2012.11.080
  • J. Glaum , et al. , Tailoring the piezoelectric and relaxor properties of (Bi1/2Na1/2)TiO3–BaTiO3 via zirconium doping. J. Am. Ceram. Soc. 96 (9), 2881 (2013). http://dx.doi.org/10.1111/jace.12405
  • H. Simons , et al. , Origin of large recoverable strain in 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 near the ferroelectric-relaxor transition. Appl. Phys. Lett. 102 (6), 062902 (2013)., http://dx.doi.org/10.1063/1.4790285.
  • J. Shi , H. Fan , and Z. Li . Electromechanical properties and microstructure evolution of BNT-BT piezoelectric ceramics. Ferroelectrics 404 (1), 93 (2010). http://dx.doi.org/10.1080/00150193.2010.482456.
  • T. Badapanda , S. Sahoo , and P. Nayak . Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region. IOP Conf. Ser: Mater. Sci. Eng. 178, 012032 (2017). http://dx.doi.org/10.1088/1757-899X/178/1/012032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.