161
Views
8
CrossRef citations to date
0
Altmetric
SECTION C: Relaxor Ferroelectrics

Structural, Electronic, and Mechanical Properties of A3Mn2O7 (A = Sr, Ca): Ab Initio Calculation

, , &
Pages 135-145 | Received 14 May 2018, Accepted 13 Oct 2018, Published online: 17 May 2019

References

  • N. Mahamdioua et al., Magneto-conductive mechanisms in the La-site doped double-layered La1.4Ca1.6Mn2O7 manganites. Physica B. 500, 77 (2016). DOI: 10.1016/j.physb.2016.07.011.
  • H. Tanaka, and T. Kawai, Artificial construction of layered perovskite superlattice by laser molecular-beam epitaxy. Appl. Phys. Lett. 76(24), 3618 (2000). DOI: 10.1063/1.126725.
  • J. F. Mitchell et al., Sr3Mn2O7: Mn4+ Parent Compound of the n = 2 Layered CMR Manganites. J. Solid State Chem. 141(2), 599 (1998). : DOI: 10.1006/jssc.1998.8026.
  • Y. Konishi et al., Fabrication and physical properties of c-axis oriented thin films of layered perovskite La2-2xSr1 + 2xMn2O7. Appl. Phys. Lett. 73(20), 3004 (1998). DOI: 10.1063/1.122658.
  • P. Fris et al., Direct observation of double exchange in ferromagnetic La0.7Sr0.3CoO3 by broadband ellipsometry. Phys. Rev. B. 97, 045137 (2018).
  • R. Chihoub et al.,Magneto resistive properties of cerium doped La0.7Ca0.3MnO3 manganites. Physica B. 492, 11 (2016). DOI: 10.1016/j.physb.2016.03.031.
  • S. P. Altintas et al., Effect of anionic substitution on the structural and magneto-electrical properties of La–Ca–Mn–O perovskite manganites. J. Magn. Magn. Mater. . 368, 111 (2014). DOI: 10.1016/j.jmmm.2014.05.010.
  • N. Mahamdioua et al., Structural and magnetotransport properties of the Y doped A-site deficient double layered manganites La1.2_x□0.2YxCa1.6Mn2O7. J. Solid State Chem. 240, 1 (2016). DOI: 10.1016/j.jssc.2016.05.011.
  • H. Meskine, Z. S. Popovic, and S. Satpathy, Electronic structure and exchange interaction in the layered perovskite Sr3Mn2O7. Phys. Rev. B. 65, 094402 (2002).
  • K. Raju, M. S. Song, and J. Y. Lee, Crystal structure and magnetic properties of La2_x(Sr0.5Ca0.5)1+xMn2O7 (x = 0.6, 0.8 and 1.0) Ruddlesden–Popper manganites. J. Magn. Magn. Mater. 358, 119 (2014). DOI: 10.1016/j.jmmm.2014.01.040.
  • M. V. Lobanov et al., Crystal and magnetic structure of the Ca3Mn2O7 Ruddlesden–Popper phase: neutron and synchrotron x-ray diffraction study. J. Phys: Condens. Matter . 16, 5339 (2004). DOI: 10.1088/0953-8984/16/29/023.
  • X. Zhang et al., Novel optical and magnetic properties of Li-doped quasi-2D manganate Ca3Mn2O7 particles. J. Mater. Chem. C. 5(28), 7011 (2017). DOI: 10.1039/C7TC01667K.
  • W. Zhu et al., Electrically induced decrease of magnetization in Ca3Mn2O7. Appl. Phys. Lett. 101(19), 192407 (2012). DOI: 10.1063/1.4767139.
  • N. A. Benedek, and C. J. Fennie, Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).
  • T. Mulder et al., Turning ABO3 Antiferroelectrics into Ferroelectrics: Design Rules for Practical Rotation-Driven Ferroelectricity in Double Perovskites and A3B2O7 Ruddlesden-Popper Compounds. Adv. Funct. Mater. 23, 4810 (2013).
  • B. Gao et al., Interrelation between domain structures and polarization switching in hybrid improper ferroelectric Ca3(Mn,Ti)2O7. Appl. Phys. Lett. 110(22), 222906 (2017). : DOI: 10.1063/1.4984841.
  • X. Q. Liu et al., Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti,Mn)2O7 ceramics. Appl. Phys. Lett. 106(20), 202903 (2015). : DOI: 10.1063/1.4921624.
  • J. G. Cherian et al., Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7. Appl. Phys. Lett. 108(26), 262901 (2016).
  • X. Li et al., Ultra-low coercive field of improper ferroelectric Ca3Ti2O7 epitaxial thin films. Appl. Phys. Lett. 110(4), 042901 (2017). DOI: 10.1063/1.4974217.
  • M. Greenblatt, Ruddlesden-Popper Lnn+1NinO3n+1 nickelates: structure and properties. Curr. Opin. Solid State Mater. Sci. 2, 174 (1997). DOI: 10.1016/S1359-0286(97)80062-9.
  • I. D. Fawcett et al., Structure, magnetism, and properties of Ruddlesden-popper calcium manganates prepared from citrate gels. Chem. Mater. 10, 3643 (1998).
  • S. F. Matar et al., First-principles study of the electronic and magnetic structures of the tetragonal and orthorhombic phases of Ca3Mn2O7. Phys. Rev. B. 76, 054403 (2007).
  • Z. Wei, and T. Pei-Qing, A first-principles study of the structural and elastic properties of orthorhombic and tetragonal Ca3Mn2O7. Chin. Phys. B. 22, 066201 (2013).
  • G. Kresse, and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47(1), 558 (1993). DOI: 10.1103/PhysRevB.47.558.
  • G. Kresse, and J. Furthmuller, Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15 (1996). DOI: 10.1016/0927-0256(96)00008-0.
  • G. Kresse, and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59(3), 1758 (1999). DOI: 10.1103/PhysRevB.59.1758.
  • G. Kresse, and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54(16), 11169 (1996). DOI: 10.1103/PhysRevB.54.11169.
  • P. Hohenberg, and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, A1133 (1964).
  • J. P. Perdew, S. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13(12), 5188 (1976). DOI: 10.1103/PhysRevB.13.5188.
  • J. L. Zhu et al., La‐doping and external pressure effects on the crystal structure of layered perovskite‐like manganate Ca3Mn2O7. Phys. Stat. Sol. (a). 194(1), 159 (2002). DOI: 10.1002/1521-396X(200211)194:1<159::AID-PSSA159>3.0.CO;2-9.
  • N. Guechi et al., Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2. Solid State Sci. 29, 12 (2014). DOI: 10.1016/j.solidstatesciences.2014.01.001.
  • M. Xu et al., Optical properties of cubic Ti3N4, Zr3N4 and Hf3N4. Appl. Phys. Lett. 89(15), 151908 (2006). DOI: 10.1063/1.2360937.
  • Y. Shen, and Z. Zhou, Structural, electronic, and optical properties of ferroelectric KTa1/2Nb1/2O3 solid solutions. J. Appl. Phys. 103(7), 074113 (2008). DOI: 10.1063/1.2902433.
  • M. Dadsetani, and A. Pourghazi, Optical properties of strontium monochalcogenides from first principles. Phys. Rev. B. 73, 195102 (2006).
  • E. Deligoz, and H. Ozisik, Mechanical and dynamical stability of TiAsTe compound from ab initio calculations. Philos. Mag. 95(21), 2294 (2015). DOI: 10.1080/14786435.2015.1056854.
  • P. Bhardwaj, and S. Singh, First principle calculation of structural, electronic and elastic properties of rare earth nitride. Mater. Sci.-Poland. 34(4), 715 (2016). DOI: 10.1515/msp-2016-0123.
  • Y. Le Page, and P. Saxe, Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations. Phys. Rev. B. 63, 174103 (2001).
  • Z. J. Wu et al., Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B. 76, 054115 (2007).
  • H. Koc et al., First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds. Solid State Sci. 14(8), 1211 (2012). DOI: 10.1016/j.solidstatesciences.2012.06.003.
  • M. X. Zeng et al., Elastic and electronic properties of tI26-type Mg12RE (RE = Ce, Pr and Nd) phases. Model. Simul. Mater. Sci. Eng. 20(3), 035018 (2012). DOI: 10.1088/0965-0393/20/3/035018.
  • U. F. Ozyar, E. Deligoz, and K. Colakoglu, Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds. Solid State Sci. 40, 92 (2015). DOI: 10.1016/j.solidstatesciences.2015.01.001.
  • J. Haines, J. M. Leger, and G. Bocquillon, Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31(1), 1 (2001). DOI: 10.1146/annurev.matsci.31.1.1.
  • S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline Pure Metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367), 823 (1954). DOI: 10.1080/14786440808520496.
  • T. Toyota et al., High-temperature thermoelectric property of layered La2-2xCa1 + 2xMn2O7 manganites (0.75≤ x≤ 1.0). Jpn. J. Appl. Phys. 50, 041101 (2011). DOI: 10.7567/JJAP.50.041101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.