78
Views
1
CrossRef citations to date
0
Altmetric
Articles

The bulk screening field in nonstoichiometric lithium tantalate single crystals

, , &
Pages 30-38 | Received 29 Aug 2018, Accepted 26 Nov 2018, Published online: 09 Jul 2019

References

  • R. L. Byer, Quasi-phasematched nonlinear interactions and devices. J. Nonlinear Optic. Phys. Mat. 06(04), 549 (1997). DOI: 10.1142/S021886359700040X.
  • J. A. Armstrong et al., Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127(6), 1918 (1962). DOI: 10.1103/PhysRev.127.1918.
  • D. S. Hum, and M. M. Fejer, Quasi-phasematching. C. R. Phys. 8(2), 180 (2007). DOI: 10.1016/j.crhy.2006.10.022.
  • V. Y. Shur et al., Recent achievements in domain engineering in lithium niobate and lithium tantalate. Ferroelectrics. 257(1), 191 (2001). DOI: 10.1080/00150190108016300.
  • V. Y. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Rev. 2(4), 040604 (2015). DOI: 10.1063/1.4928591.
  • G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Domain wall nanoelectronics. Rev. Mod. Phys. 84(1), 119 (2012). DOI: 10.1103/RevModPhys.84.119.
  • A. Crassous, T. Sluka, A. K. Tagantsev, and N. Setter, Polarization charge as a reconfigurable quasi- dopant in ferroelectric thin films. Nat. Nanotech. 10(7), 614 (2015). DOI: 10.1038/nnano.2015.114.
  • E. A. Eliseev et al., Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B. 83, 235313 (2011). DOI: 10.1103/PhysRevB.83.235313.
  • M. Schröder et al., Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22(18), 3936 (2012). DOI: 10.1002/adfm.201201174.
  • J. Seidel et al., Conduction at domain walls in oxide multiferroics. Nat. Mater. 8(3), 229 (2009). DOI: 10.1038/nmat2373.
  • J. Seidel, Domain walls as nanoscale functional elements. J. Phys. Chem. Lett. 3(19), 2905 (2012). DOI: 10.1021/jz3011223.
  • A. Nguyen et al., Toward ferroelectric control of monolayer MoS2. Nano Lett. 15(5), 3364 (2015)., DOI: 10.1021/acs.nanolett.5b00687.
  • X. Liu et al., Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect. Appl. Phys. Lett. 91(4), 044101 (2007). DOI: 10.1063/1.2759472.
  • S. Damm et al., Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods. J. Phys. Chem. C. 116(50), 26543 (2012). DOI: 10.1021/jp310248w.
  • S. Habicht, R. J. Nemanich, and A. Gruverman, Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects. Nanotechnology. 19(49), 495303 (2008). DOI: 10.1088/0957-4484/19/49/495303.
  • S. Damm et al., Surface enhanced luminescence and Raman scattering from ferroelectrically defined Ag nanopatterned arrays. Appl. Phys. Lett. 103(8), 083105 (2013). DOI: 10.1063/1.4818910.
  • M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28(11), 2631 (1992). DOI: 10.1109/3.161322.
  • V. Y. Shur, Domain nanotechnology in lithium niobate and lithium tantalate crystals. Ferroelectrics. 399(1), 97 (2010). DOI: 10.1080/00150193.2010.490290.
  • A. I. Lobov et al., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3. Ferroelectrics. 341(1), 109 (2006). DOI: 10.1080/00150190600896994.
  • V. Y. Shur, Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3. J. Mater. Sci. 41(1), 199 (2006). DOI: 10.1007/s10853-005-6065-7.
  • V. Y. Shur, Y. A. Popov, and N. V. Korovina, Bound internal field in lead germanate. Phys. Solid. State. 26, 471 (1984).
  • V. Y. Shur et al., Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family. Phys. Solid State. 52(10), 2147 (2010). DOI: 10.1134/S1063783410100215.
  • I. S. Baturin et al., Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics. 374(1), 1 (2008). DOI: 10.1080/00150190802418860.
  • L. Tian, V. Gopalan, and L. Galambos, Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration. Appl. Phys. Lett. 85(19), 4445 (2004). DOI: 10.1063/1.1814436.
  • V. Gopalan, and M. C. Gupta, Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence. Appl. Phys. Lett. 68, 1995 (1996). DOI: 10.1063/1.116220.
  • V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin, and E. V. Shishkina, Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by vapor transport equilibration. J. Appl. Phys. 111(1), 014101 (2012). DOI: 10.1063/1.3673601.
  • V. Y. Shur et al., Domain shape in congruent and stoichiometric lithium tantalate. Ferroelectrics. 269(1), 195 (2002). DOI: 10.1080/00150190211168.
  • D. S. Hum et al., Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion. J. Appl. Phys. 101(9), 093108 (2007). DOI: 10.1063/1.2723867.
  • S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, Domain reversal and nonstoichiometry in lithium tantalate. J. Appl. Phys. 90(6), 2949 (2001). DOI: 10.1063/1.1389525.
  • V. Gopalan, and T. E. Mitchell, In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy. J. Appl. Phys. 85(4), 2304 (1999). DOI: 10.1063/1.369542.
  • C. C. Battle et al., Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures. Appl. Phys. Lett. 76(17), 2436 (2000). DOI: 10.1063/1.126368.
  • M. A. Chuvakova et al., Formation of self-assembled domain structures in single crystals of lithium tantalate with artificial dielectric layer. Ferroelectrics. 496(1), 92 (2016). DOI: 10.1080/00150193.2016.1155030.
  • W. J. Merz, Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95(3), 690 (1954). DOI: 10.1103/PhysRev.95.690.
  • V. Y. Shur, A. R. Akhmatkhanov, M. A. Chuvakova, and I. S. Baturin, Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate. Appl. Phys. Lett. 105(15), 152905 (2014). DOI: 10.1063/1.4898348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.