182
Views
1
CrossRef citations to date
0
Altmetric
Articles

Annealing stability of the domain structure in periodically poled MgO doped lithium niobate single crystals

, , , &
Pages 45-51 | Received 29 Aug 2018, Accepted 26 Nov 2018, Published online: 09 Jul 2019

References

  • S. A. Fedulov, I. Shapiro, and P. B. Ladyzhenski, Application of Czochralski method for growth of LiNbO3, LiTaO3, and NaNbO3 single crystals, Kristallografiya. 10, 268 (1965).
  • C. D. Brandle, Czochralski growth of oxides, J. Cryst. Growth. 264(4), 593 (2004). DOI: 10.1016/j.jcrysgro.2003.12.044.
  • A. A. Ballman, Growth of piezoelectric and ferroelectric materials by the Czochralski technique, J. Ame. Ceram. Soc. 48(2), 112 (1965). DOI: 10.1111/j.1151-2916.1965.tb11814.x.
  • T. Volk, and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag Berlin, Berlin, 2008).
  • K. Nassau, H. J. Levinstein, and G. M. Loiacono, The domain structure and etching of ferroelectric lithium niobate, Appl. Phys. Lett. 6(11), 228 (1965). DOI: 10.1063/1.1754147.
  • V. Y. Shur et al., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications, Ferroelectrics. 236(1), 129 (2000). DOI: 10.1080/00150190008016047.
  • V. Y. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Micro- and nano-domain engineering in lithium niobate, Appl. Phys. Rev. 2(4), 040604 (2015). DOI: 10.1063/1.4928591.
  • A. L. Alexandrovski et al., UV and visible absorption in LiTaO3, Proc. SPIE, San Jose, CA. 3610, 44–52 (1999). DOI: 10.1117/12.349242.
  • Y. Furukawa et al., Green-induced infrared absorption in MgO doped LiNbO3, Appl. Phys. Lett. 78(14), 1970 (2001). DOI: 10.1063/1.1359137.
  • A. Kuroda, S. Kurimura, and Y. Uesu, Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields, Appl. Phys. Lett. 69(11), 1565 (1996). DOI: 10.1063/1.117031.
  • K. Mizuuchi et al., Electric-field poling in Mg-doped LiNbO3, J. Appl. Phys. 96(11), 6585 (2004). DOI: 10.1063/1.1811391.
  • Y. Furukawa et al., Growth and characterization of MgO-doped LiNbO3 for electro-optic devices, J. Cryst. Growth. 99(1–4), 832 (1990). DOI: 10.1016/S0022-0248(08)80035-8.
  • Y. Furukawa et al., Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations, Appl. Phys. Lett. 77(16), 2494 (2000). DOI: 10.1063/1.1318721.
  • D. A. Bryan, R. Gerson, and H. E. Tomaschke, Increased optical damage resistance in lithium niobate, Appl. Phys. Lett. 44(9), 847 (1984). DOI: 10.1063/1.94946.
  • X. Liu, K. Kitamura, and K. Terabe, Thermal stability of LiTaO3 domains engineered by scanning force microscopy, Appl. Phys. Lett. 89(14), 142906 (2006). DOI: 10.1063/1.2357556.
  • V. D. Kugel et al., Domain inversion in KTiOPO4 crystal near the Curie point, J. Appl. Phys. 76(8), 4823 (1994). DOI: 10.1063/1.357255.
  • M. Yamada, and M. Saitoh, Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field, J. Appl. Phys. 84(4), 2199 (1998). DOI: 10.1063/1.368283.
  • G. Lindgren et al., Thermal stability of ferroelectric domain gratings in Rb-doped KTP, Appl. Phys. Lett. 107(8), 082906 (2015). DOI: 10.1063/1.4929817.
  • F. Masiello et al., Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP, J. Appl. Crystallogr. 44(3), 462 (2011). DOI: 10.1107/S0021889811012532.
  • K. Mizuuchi et al., High-power continuous wave green generation by single-pass frequency doubling of a Nd:GdVO4 laser in a periodically poled MgO:LiNbO3 operating at room temperature, Jpn. J. Appl. Phys., Part 2 Lett. 42, 1296 (2003). DOI: 10.1143/JJAP.42.L1296.
  • V. Y. Shur et al., Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals, J. Appl. Phys. 113(18), 187211 (2013). DOI: 10.1063/1.4801969.
  • V. Y. Shur et al., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation, Appl. Phys. Lett. 99(8), 082901 (2011). DOI: 10.1063/1.3628646.
  • V. Y. Shur et al., Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions, Ferroelectrics. 341(1), 85 (2006). DOI: 10.1080/00150190600897075.
  • T. Kämpfe et al., Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation, Phys. Rev. B. 89, 035314 (2014). DOI: 10.1103/PhysRevB.89.035314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.