76
Views
9
CrossRef citations to date
0
Altmetric
Articles

Preparation and dielectric properties of a mixed ferroelectric composite from nanoparticles of cellulose and triglycine sulfate

, , , &

References

  • H. Zhao et al., Effect of the nanopore on ferroelectric domain structures and switching properties. Comp. Mater. Sci. 148, 216 (2018). DOI: 10.1016/j.commatsci.2018.02.022.
  • S. D. Milovidova et al., Dielectric properties of composites based on nanocrystalline cellulose and triglycine sulfate. Ferroelectcrics. 469 (1), 116 (2014). DOI: 10.1080/00150193.2014.949132.
  • H. T. Nguyen et al., Investigation of dielectric relaxation in ferroelectric composite nanocrystalline cellulose-triglycine sulfate. Ferroelectrics. 498 (1), 27 (2016). DOI: 10.1080/00150193.2016.1166835.
  • S. D. Milovidova et al., Dielectric properties of the mixed nanocomposites: triglycine sulfate – silica. Ferroelectrics. 497 (1), 69 (2016). DOI: 10.1080/00150193.2016.1162620.
  • H. Banno, and K. Ogura, Dielectric and piezoelectric properties of a flexible composite consisting of polymer and mixed ceramic powder of PZT and PbTiO3. Ferroelectrics. 95 (1), 171 (1989). DOI: 10.1080/00150198908245198.
  • S. Agate et al., Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites – a review. Carbohydr. Polym. 198, 249 (2018). DOI: 10.1016/j.carbpol.2018.06.045.
  • N. H. Thu’o’ng, A. S. Sidorkin, and S. D. Milovidova, Dispersion of dielectric permittivity in a nanocrystalline cellulose–triglycine sulfate composite at low and ultralow frequencies. Phys. Solid State. 60, 559 (2018). DOI: 10.1134/S1063783418030320.
  • H. T. Nguyen et al., Electrophysical properties of matrix composites nanocrystalline cellulose – triglycine sulfate. Ferroelectrics. 512 (1), 71 (2017). DOI: 10.1080/00150193.2017.1349900.
  • K. T. Nguen et al., Dielectric properties of composites based on nanocrystalline cellulose with triglycine sulfate. Phys. Solid State. 57 (3), 503 (2015). DOI: 10.1134/S1063783415030178.
  • H. T. Nguyen et al., Influence of humidity on dielectric properties of nanocrystalline cellulose – triglycine sulfate composites. Ferroelectrics. 501 (1), 180 (2016). DOI: 10.1080/00150193.2016.1204866.
  • T. Fattahi Meyabadi et al., Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol. 261, 232 (2014). DOI: 10.1016/j.powtec.2014.04.039.
  • P. B. Filson, B. E. Dawson-Andoh, and D. Schwegler-Berry, Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem. 11 (11), 1808 (2009). DOI: 10.1039/b915746h.
  • S.-S. Wong, S. Kasapis, and Y. M. Tan, Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydr. Polym. 77 (2), 280 (2009). DOI: 10.1016/j.carbpol.2008.12.038.
  • P. Satyamurthy et al., Preparation and characterization of cellulose nanowhiskers from cotton fibers by controlled microbial hydrolysis. Carbohydr. Polym. 83(1), 122 (2011). DOI: 10.1016/j.carbpol.2010.07.029.
  • N. Sinha et al., Performance of crystal violet doped triglycine sulfate single crystals for optical and communication applications. Cryst. Eng. Comm. 17 (30), 5757 (2015).
  • Y. Cao, and H. Tan, Structural characterization of cellulose with enzymatic treatment. J. Mol. Struct. 705 (1–3), 189 (2004). DOI: 10.1016/j.molstruc.2004.07.010.
  • S. Y. Oh et al., FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 340 (3), 417 (2005). DOI: 10.1016/j.carres.2004.11.027.
  • L. Wang et al., Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol. Bioeng. 93 (3), 443 (2006). DOI: 10.1002/bit.20730.
  • P. Lu, and Y.-L. Hsieh, Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr. Polym. 82 (2), 329 (2010). DOI: 10.1016/j.carbpol.2010.04.073.
  • H. Zhao et al., Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr. Polym. 68 (2), 235 (2007). DOI: 10.1016/j.carbpol.2006.12.013.
  • T. R. Volk, S. V. Mednikov, and L. A. Shuvalov, Unipolarity of TGS – crystals induced in paraelectric phase. Ferroelectrics. 47 (1), 15 (1983). DOI: 10.1080/00150198308227816.
  • A. K. Jonscher, The ‘universal’ dielectric response. Nature. 267 (5613), 673 (1977). DOI: 10.1038/267673a0.
  • A. K. Jonscher, Dielectric Relaxation in Solids. London: Chelsea Dielectric Press; 1983.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.