72
Views
2
CrossRef citations to date
0
Altmetric
Articles

Phase transitions in PbYb1/2Nb1/2O3 with different degree of compositional ordering

, , , , , , , & show all

References

  • V. A. Isupov, Ferroelectric and antiferroelectric perovskites PbB′0.5B′′0.5O3. Ferroelectrics. 289 (1), 131 (2003). DOI: 10.1080/00150190390221368.
  • A. A. Bokov et al., Compositional ordering and phase transitions in Pb(Yb0.5Nb0.5)O3. J. Phys: Condens. Matter. 5, 5491 (1993). DOI: 10.1088/0953-8984/5/31/013.
  • V. Demidova et al., Atomic structure and phase transitions in antiferroelectric Pb(Yb1/2Nb1/2)O3. Ferroelectrics. 159 (1), 191 (1994). DOI: 10.1080/00150199408007571.
  • A. Kania, Crystallographic and dielectric properties of flux grown (B′B″: InNb, InTa, YbNb, YbTa and MgW) single crystals. J. Cryst. Growth. 310 (11), 2767 (2008). DOI: 10.1016/j.jcrysgro.2008.02.024.
  • J. R. Kwon, and W. K. Choo, The antiferroelectric crystal structure of the highly ordered complex perovskite Pb(Yb1/2Nb1/2)O3. J. Phys: Condens. Matter. 3, 2147 (1991). DOI: 10.1088/0953-8984/3/13/017.
  • S. I. Raevskaya et al., Critical nature of the giant field-induced pyroelectric response in PbMg1/3Nb2/3O3-PbTiO3 single crystals. Appl. Phys. Lett. 93 (4), 042903 (2008). DOI: 10.1063/1.2966147.
  • S. Zhang, and F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys. 111, 031301 (2012). DOI: 10.1063/1.3679521.
  • E. Dul'kin, I. P. Raevski, and S. M. Emel'yanov, Acoustic emission and thermal expansion of Pb(Mg1/3Nb2/3)O3 and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Phys. Solid State. 45, 158 (2003).
  • Y. N. Zakharov et al., Field-induced enhancement of pyroelectric response of PbMg1/3Nb2/3O3-PbTiO3 and PbFe1/2Nb1/2O3-PbTiO3 solid solution ceramics. Ferroelectrics. 399 (1), 20 (2010). DOI: 10.1080/00150193.2010.489850.
  • C. Cochard et al., Original reaction sequence of Pb(Yb1/2Nb1/2)O3-PbTiO3: consequences on dielectric properties and chemical order. Adv. Mater. Sci. Eng. 2015, 1 (2015). DOI: 10.1155/2015/408101.
  • A. Sternberg et al., Morphotropic ceramic solid solutions of the Pb(B31/2Nb1/2)O3 - PbTiO3 binary system. Ferroelectrics. 241 (1), 51 (2000). DOI: 10.1080/00150190008224974.
  • I. P. Raevski et al., Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3 – PbTiO3 solid solution ceramics. J. Mater. Sci. 49 (18), 6459 (2014). DOI: 10.1007/s10853-014-8376-z.
  • D. A. Sanchez et al., Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe,M)x(Zr,Ti)(1−x)O3 [M = Ta, Nb]. J. Appl. Phys. 113, 074105 (2013). DOI: 10.1063/1.4790317.
  • V. V. Laguta et al., Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3. J. Mater. Sci. 51 (11), 5330 (2016). DOI: 10.1007/s10853-016-9836-4.
  • Y. Yamashita et al., Effects of B-site ions on the electromechanical coupling factors of Pb(B′B′′)O3–PbTiO3 piezoelectric materials. Jpn. J. Appl. Phys. 37 (Part 1, No. 9B), 5288 (1998). DOI: 10.1143/JJAP.37.5288.
  • E. I. Sitalo et al., Dielectric and piezoelectric properties of PbFe1/2Nb1/2O3–PbTiO3 ceramics from the morphotropic phase boundary compositional range. IEEE Trans. Ultrason, Ferroelect, Freq. Contr. . 58 (9), 1914 (2011). DOI: 10.1109/TUFFC.2011.2031.
  • I. P. Raevski et al., Studies of ferroelectric and magnetic phase transitions in Pb1-xAxFe1/2Nb1/2O3 (A-Ca, Ba) solid solutions. Ferroelectrics. 398(1), 16 (2010). DOI: 10.1080/00150193.2010.489807.
  • C. G. F. Stenger, F. L. Scholten, and A. J. Burggraaf, Ordering and diffuse phase transitions in Pb(Sc0.5Ta0.5)O3 ceramics. Solid State Commun. 32 (11), 989 (1979). DOI: 10.1016/0038-1098(79)90812-3.
  • N. Setter, and L. E. Cross, The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. J. Appl. Phys. 51 (8), 4356 (1980). DOI: 10.1063/1.328296.
  • I. P. Raevski et al., Random-site cation ordering and dielectric properties of PbMg1/3Nb2/3O3-PbSc1/2Nb1/2O3. Integrated Ferroelectrics. 53, 475 (2003). DOI: 10.1080/714040696.
  • P. K. Davies et al., Crystal chemistry of complex perovskites: new cation-ordered dielectric oxides. Annu. Rev. Mater. Res. . 38 (1), 369 (2008). DOI: 10.1146/annurev.matsci.37.052506.084356.
  • V. A. Shuvaeva et al., The local structure of mixed-ion perovskites. J. Phys: Condens. Matter . 15, 2413 (2003). DOI: 10.1088/0953-8984/15/14/317.
  • A. A. Bokov, N. P. Protsenko, and Z.-G. Ye, Relationship between ionicity, ionic radii and order/disorder in complex perovskites. J. Phys. Chem. Sol. 61 (9), 1519 (2000). DOI: 10.1016/S0022-3697(00)00004-4.
  • V. V. Laguta et al., Superspin glass phase and hierarchy of interactions in multiferroic PbFe1/2Sb1/2O3: an analog of ferroelectric relaxors? New J. Phys. 16, 11304-1 (2014).
  • I. P. Raevski et al., X-ray and dielectric studies of liquid-phase sintered PbB3+1/2B5+1/2O3 ceramics with differing degree of compositional ordering. Ferroelectrics. 235 (1), 205 (1999). DOI: 10.1080/00150199908214879.
  • X. S. Gao et al., B-site disordering in Pb(Sc1/2Ta1/2)O3 by mechanical activation. Appl. Phys. Lett. 82 (26), 4773 (2003). DOI: 10.1063/1.1581384.
  • X. Gao, J. Xue, and J. Wang, Mechanical activation-induced sequential combination, morphotropic segregation and order/disorder transformation in Pb-based relaxors. Mater. Sci. Eng. B. 99, 63 (2003). DOI: 10.1016/S0921-5107(02)00566-4.
  • X. S. Gao, J. M. Xue, and J. Wang, The B-site order-disorder transformation in Pb(Sc1/2Ta1/2)O3 triggered by mechanical activation. J. Mater. Sci. 39, 5267 (2004). DOI: 10.1023/B:JMSC.0000039225.87405.62.
  • A. A. Gusev et al., Dielectric and Mossbauer studies of Pb(Fe1/2Ta1/2)O3 multiferroic ceramics sintered from mechanoactivated powder. Ferroelectrics. 475 (1), 41 (2015). DOI: 10.1080/00150193.2015.995007.
  • H. Uršič et al., Unusual structural-disorder stability of mechanochemically derived-Pb(Sc0.5Nb0.5)O3. J. Mater. Chem. C. 3 (39), 10309 (2015). DOI: 10.1039/C5TC02205C.
  • I. P. Raevski et al., Control of the degree of compositional ordering of Pb2YbMO6 (M – Nb, Ta) perovskites by means of mechanical activation. Ferroelectrics. 525 (1), 54 (2018). DOI: 10.1080/00150193.2018.1432928.
  • I. P. Raevski et al., Structural and dielectric studies of PbYb1/2Nb1/2O3 ceramics with the differing degree of the long-range compositional ordering fabricated by mechanoactivation. Springer Proc. Phys. 207, 209 (2018).
  • D. Viehland, S. Jang, L. E. Cross, and M. Wuttig, The dielectric relaxation of lead magnesium niobate relaxor ferroelectrics. Philos. Mag. B. 64 (3), 335 (1991). DOI: 10.1080/13642819108207624.
  • I. P. Raevski et al., Spontaneous phase transition from relaxor to macrodomain ferroelectric state in single-crystal PbSc0.5Nb0.5O3-BaSc0.5Nb0.5O3 solid solutions. Phys. Solid State. 42, 161 (2000). DOI: 10.1134/1.1131185.
  • F. Chu, I. M. Reaney, and N. Setter, Investigation of relaxors that transform spontaneously into ferroelectrics. Ferroelectrics. 151 (1), 343 (1994). DOI: 10.1080/00150199408244759.
  • I. P. Raevski et al., NaNbO3–based relaxor. Ferroelectrics. 299 (1), 95 (2004). DOI: 10.1080/00150190490429231.
  • S. Ke, H. Fan, and H. Huang, Revisit of the Vögel–Fulcher freezing in lead magnesium niobate relaxors. Appl. Phys. Lett. 97 (13), 132905. 1 (2010). DOI: 10.1063/1.3494531.
  • A. A. Bokov, and Z.-G. Ye, Dielectric relaxation in relaxor ferroelectrics. J. Adv. Dielect. . 2 (2), 1241010.1 (2012). DOI: 10.1142/S2010135X1241010X.
  • S. Prosandeev, and L. Bellaiche, Effects of atomic short-range order on properties of the PbMg1/3Nb2/3O3 relaxor ferroelectric. Phys. Rev. B. 94, 180102(R) (2016).
  • C. A. Randall, and A. S. Bhalla, Nanostructural-property relations in complex lead perovskites. Jpn. J. Appl. Phys. 29 (Part 1, No. 2), 327 (1990). DOI: 10.1143/JJAP.29.327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.