136
Views
5
CrossRef citations to date
0
Altmetric
Articles

TiO2/SiO2 membrane materials via a sol–gel process: preparation and characterization calcined under N2 atmosphere

&
Pages 10-20 | Received 14 Oct 2018, Accepted 03 Feb 2019, Published online: 10 Sep 2019

References

  • M. Z. Jacobson et al., The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims, Proc. Natl. Acad. Sci. USA. 114(26), 5021 (2017).
  • J. Yang, and J. Chen, Hydrophobic modification and silver doping of silica membranes for H2/CO2 separation, J. CO2 Util. 3, 21 (2013). DOI: 10.1016/j.jcou.2013.08.004.
  • S. C. Kumbharkar, Y. Liu, and K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation, J. Membr. Sci. 375(1-2), 231 (2011). DOI: 10.1016/j.memsci.2011.03.049.
  • R. M. De Vos, and H. Verweij, High-selectivity, high-flux silica membranes for gas separation, Science. 279(5357), 1710 (1998).
  • H. Nagasawa et al., Atmospheric-pressure plasma-enhanced chemical vapor deposition of microporous silica membranes for gas separation, J. Membr. Sci. 524, 644 (2017). DOI: 10.1016/j.memsci.2016.11.067.
  • H. L. Castricum et al., Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group, Adv. Funct. Mater. 21(12), 2319 (2011). DOI: 10.1002/adfm.201002361.
  • T. Niimi et al., Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation, J. Membr. Sci. 455, 375 (2014). DOI: 10.1016/j.memsci.2014.01.003.
  • T. V. Gestel et al., Potentialities of microporous membranes for H2/CO2 separation in future fossil fuel power plants: Evaluation of SiO2, ZrO2, Y2O3-ZrO2 and TiO2-ZrO2 sol-gel membranes, J. Membr. Sci. 359, 64 (2010). DOI: 10.1016/j.memsci.2010.04.002.
  • K. Laohhasurayotin, and D. Viboonratanasri, Preparation and characterization of titania-entrapped silica hollow particles: effective dye removal and evidence of selectivity, Phys. Chem. Chem. Phys. 15(24), 9626 (2013). DOI: 10.1039/c3cp50872b.
  • H. Li et al., Inorganic microporous membranes for H2 and CO2 separation-review of experimental and modeling progress, Chem. Eng. Sci. 127, 401 (2015). DOI: 10.1016/j.ces.2015.01.022.
  • Y. Yampolskii, Polymeric gas separation membranes, Macromolecules. 45(8), 3298 (2012). DOI: 10.1021/ma300213b.
  • P. Bernardo, and G. Clarizia, 30 years of membrane technology for gas separation, Chem. Eng. Trans. 32, 2013 (1999).
  • F. Huang, and C. J. Cornelius, Polyimide-SiO2-TiO2 nanocomposite structural study probing free volume, physical properties, and gas transport, J. Membr. Sci. 542, 110 (2017). DOI: 10.1016/j.memsci.2017.08.003.
  • V. C. Souza, and M. G. N. Quadri, Organic-inorganic hybrid membranes in separation processes: a 10-year review, Braz. J. Chem. Eng. 30(4), 683 (2013). DOI: 10.1590/S0104-66322013000400001.
  • X. Yu et al., Research progress of nanostructured materials for heterogeneous catalysis, CNANO. 7(4), 576 (2011). DOI: 10.2174/157341311796196709.
  • P. Karasiński et al., Optical rib waveguides based on sol-gel derived silica–titania films, Thin Solid Films. 519(16), 5544 (2011).
  • A. Eshaghi, and A. Eshaghi, Optical and hydrophilic properties of Cr doped TiO2-SiO2 nanostructure thin film, Appl. Surf. Sci. 258(7), 2464 (2012). DOI: 10.1016/j.apsusc.2011.10.073.
  • H. Wang et al., Synthesis and Characterization of the Positive Electrode Material LiFePO4/C under Different Microwave Heating Time, Adv. Mater. Res. 1477, 287–290 (2011). DOI: 10.4028/www.scientific.net/AMR.287-290.1477.
  • M. Alexandru et al., On the morphology and potential application of polydimethylsiloxane-silica-titania composites, Express Polym. Lett. 5(2), 188 (2011). DOI: 10.3144/expresspolymlett.2011.17.
  • W. Puthai et al., Effect of firing temperature on the water permeability of SiO2-ZrO2 membranes for nanofiltration, J. Membr. Sci. 497, 348 (2016). DOI: 10.1016/j.memsci.2015.09.040.
  • C. Tao et al., Sol-gel preparation of moisture-resistant antireflective coatings from novel hollow silica nanoparticles, J. Sol-Gel Sci. Technol. 80(2), 538 (2016). DOI: 10.1007/s10971-016-4125-x.
  • S. Kirtay, Characterization of SiO2-TiO2 Hybrid Corrosion Protective Coatings on Mild Steel, J. Mater. Eng. and Perform. 23(12), 4309 (2014). DOI: 10.1007/s11665-014-1218-y.
  • L. Wu et al., Synthesis of highly monodispersed teardrop-shaped core–shell SiO2/TiO2 nanoparticles and their photocatalytic activities, Appl. Surf. Sci. 351, 320 (2015). DOI: 10.1016/j.apsusc.2015.05.152.
  • S. Islam et al., Mesoporous SiO2-TiO2 nanocomposite for pH sensing, Sensor. Actuat. B. 221, 993 (2015). DOI: 10.1016/j.snb.2015.06.095.
  • L. L. Hench, and J. K. West, The Sol-Gel process, Chem. Rev. 90(1), 33 (1990). DOI: 10.1021/cr00099a003.
  • B. Mazinani et al., Photocatalytic activity, surface area and phase modification of mesoporous SiO2-TiO2 prepared by a one-step hydrothermal procedure, Ceram. Int. 40(8), 11525 (2014). DOI: 10.1016/j.ceramint.2014.03.071.
  • B. Torabi, and E. Ameri, Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes, Chem. Eng. J. 288, 461 (2016). DOI: 10.1016/j.cej.2015.12.011.
  • G. L. Zhuang, M. Y. Wey, and H. H. Tseng, The density and crystallinity properties of PPO-silica mixed-matrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: Effect of thermal annealing treatment, Chem. Eng. Res. Des. 104, 319 (2015). DOI: 10.1016/j.cherd.2015.08.020.
  • Q. Wei et al., Wettability, pore structure and performance of perfluorodecyl-modified silica membranes, J. Membr. Sci. 466, 114 (2014). DOI: 10.1016/j.memsci.2014.04.036.
  • F. Cheng et al., Whiter, Brighter, and More Stable Cellulose Paper Coated with TiO2/SiO2 Core/Shell Nanoparticles using a Layer-by-Layer Approach, ChemSusChem. 6(8), 1392 (2013). DOI: 10.1002/cssc.201300305.
  • S. Ramesh, A. Sivasamy, and J. H. Kim, Synthesis and characterization of maleimide-functionalized polystyrene-SiO2/TiO2 hybrid nanocomposites by sol-gel process, Nanoscale Res. Lett. 7(1), 350 (2012). DOI: 10.1186/1556-276X-7-350.
  • T. Cetinkaya et al., Synthesis of nanostructured TiO2/SiO2 as an effective photocatalyst for degradation of acid orange, Appl. Surf. Sci. 279, 384 (2013). DOI: 10.1016/j.apsusc.2013.04.121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.