228
Views
5
CrossRef citations to date
0
Altmetric
Articles

Synthesis and lithium storage performance of C/NiCo2O4 anode derived from MOFs by cation exchange

, , , , &
Pages 59-67 | Received 14 Oct 2018, Accepted 03 Feb 2019, Published online: 10 Sep 2019

References

  • S. Goriparti et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources. 257, 421 (2014). DOI: 10.1016/j.jpowsour.2013.11.103.
  • Y. Sun, N. Liu, and Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy. 1 (7), 16071 (2016).
  • S. Chu, and A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature. 488 (7411), 294 (2012). DOI: 10.1038/nature11475.
  • V. Etacheri et al., Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4 (9), 3243 (2011). DOI: 10.1039/c1ee01598b.
  • M. V. Reddy, G. V. Subba Rao, and B. V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113 (7), 5364 (2013). DOI: 10.1021/cr3001884.
  • L. Zhuo et al., Facile synthesis of a Co3O4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J. Mater. Chem. A. 1 (4), 1141 (2013). DOI: 10.1039/C2TA00284A.
  • R. Yang, Z. Wang, J. Liu, and L. Chen, Nano Co3O4 particles embedded in porous hard carbon spherules as anode material for Li-ion batteries. Electrochem. Solid. St. 7 (12), A496–A499 (2004).
  • X. Li et al., MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. J. Mater. Chem. A. 3 (33), 17392 (2015). DOI: 10.1039/C5TA03900B.
  • J. Li et al., High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces. 5 (3), 981 (2013). DOI: 10.1021/am3026294.
  • J. Liu et al., Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries. Crystengcomm. 15 (8), 1578 (2013). DOI: 10.1039/c2ce26632f.
  • W. Wang et al., A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. J. Alloy. Compd. 741, 223–230 (2018).
  • Y. Sharma et al., Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid. State. Ionics. 179 (15–16), 587 (2008). DOI: 10.1016/j.ssi.2008.04.007.
  • F. Niu et al., Hierarchically porous CuCo2O4 Microflowers: A superior anode material for Li-ion batteries and a stable cathode electrocatalyst for Li-O2 batteries. Electrochim. Acta. 208, 148 (2016). DOI: 10.1016/j.electacta.2016.05.026.
  • M. Bhardwaj et al., CuCo2O4 nanowall morphology as Li-ion battery anode: Enhancing electrochemical performance through stoichiometry control. Mater. Res. Bull. 90, 303–310 (2016).
  • Y. Sharma et al., Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 17 (15), 2855 (2007). DOI: 10.1002/adfm.200600997.
  • L. Hu et al., Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. J. Mater. Chem. A. 1 (18), 5596 (2013). DOI: 10.1039/c3ta00085k.
  • L. Wang et al., Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coordin. Chem. Rev. 307, 361 (2016). DOI: 10.1016/j.ccr.2015.09.002.
  • S. S. Kaye et al., Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129 (46), 14176 (2007). DOI: 10.1021/ja076877g.
  • S. J. Yang et al., MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24 (3), 464 (2012). DOI: 10.1021/cm202554j.
  • E. V. Perez et al., Mixed-matrix membranes containing MOF-5 for gas separations. J. Membrane. Sci. 328 (1–2), 165 (2009). DOI: 10.1016/j.memsci.2008.12.006.
  • J. Hu et al., Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption. Ind. Eng. Chem. Res. 49 (24), 12605 (2010). DOI: 10.1021/ie1014958.
  • S. Proch et al., Pt@MOF-177: Synthesis, room-temperature hydrogen storage and oxidation catalysis. Chem. Eur. J. 14 (27), 8204 (2008). DOI: 10.1002/chem.200801043.
  • K. Shen et al., Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6 (9), 5887 (2016). DOI: 10.1021/acscatal.6b01222.
  • X. M. Lin et al., Lithium-ion-battery anode materials with improved capacity from a metal-organic framework. Inorg. Chem. 55 (17), 8244 (2016). DOI: 10.1021/acs.inorgchem.6b01123.
  • Y. S. Li et al., Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Adv. Mater. Weinheim. 22 (30), 3322 (2010). DOI: 10.1002/adma.201000857.
  • F. Zou et al. , MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. Weinheim. 26 (38), 6622 (2014). DOI: 10.1002/adma.201402322.
  • R. Wu et al., Porous Spinel Zn(x)Co(3-x)O(4) hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano. 8 (6), 6297 (2014). DOI: 10.1021/nn501783n.
  • N. Stock, and S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112 (2), 933 (2012). DOI: 10.1021/cr200304e.
  • B. Liu et al., Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon. 48 (2), 456 (2010). DOI: 10.1016/j.carbon.2009.09.061.
  • S. J. Liu et al., High proton conduction in Two CoII and MnII anionic metal-organic frameworks derived from 1,3,5-benzenetricarboxylic acid. Cryst. Growth. Des. 16 (12), 6776 (2016). DOI: 10.1021/acs.cgd.6b00776.
  • H. Yue et al., MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces. 6 (19), 17067 (2014). DOI: 10.1021/am5046873.
  • L. L. Wu et al., Multishelled NixCo3-xO4 Hollow Microspheres Derived from Bimetal-Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries. Small. 13 (17), (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.