174
Views
7
CrossRef citations to date
0
Altmetric
Articles

Electronic structure and optical properties of Cu-doped SnO2

, &
Pages 137-147 | Received 14 Oct 2018, Accepted 03 Feb 2019, Published online: 10 Sep 2019

References

  • F. C. Zhang, and H. W. Cui, Magnetic and optical properties of Co-doped Zinc blende ZnO, Chin. J. Luminescence. 36 (5), 508 (2015).
  • T. T. Shao, F. C. Zhang, and H. W. Cui, Density functional theory study on the electronic structure and optical properties of Sb-doped SnO2, Laser Optoelectr. Progr. 52, 081601 (2015).
  • T. M. Lei et al., Effect of La, Ce and Nd doping on the electronic structure of monolayer MoS2. Acta Phys. Sin. 63, 067301 (2014).
  • F. Yu et al., Electronic structure and optical properties of Al-doped SnO2, Acta Phys. Sin. 60, 023101 (2011).
  • F. Yu, P. J. Wang, and C. W. Zhang, First-principles study of optical and electronic properties of N-doped SnO2, Acta Phys. Sin. 59, 7285 (2010).
  • Y. Lu et al., First-principles calculation on electronic structure and optical properties of iron-doped SnO2, Acta Phys. Sin. 60, 113101 (2011).
  • Z. H. Deng et al., First-principle calulation of effects of Sb doping on electrical conductivity of SnO2 transparent film, Acta Photonica Sinica. 36, 110 (2007).
  • J. Du, Z. G. Ji, The effect of III-family element doping on electronic structures and electrical characteristics of SnO2, Acta Phys. Sin. 56, 2388 (2007).
  • Q. Bi et al., Influences of lanthanum doping on characteristics of Ti/Sb-SnO2 electrode, J. Chin. Rare Earth Soc. 31, 465 (2013).
  • R. J. Jia et al., Preparation and characterization of rutile Ni-doped SnO2 nanoparticles, Fine Chem. 25, 1 (2008).
  • L. Yu, G. Zheng, K. H. He et al., Electronic structure and magnetism of transition metal doped SnO2, Acta Phys-Chim Sin. 26, 763 (2010).
  • L. B. Shi, H. K. Dong, and G. Q. Qi, Density functional theory description of origin of ferromagnetism in Cu doped SnO2, J. Magn. Magn. Mater. 345, 215 (2013). DOI: 10.1016/j.jmmm.2013.06.052.
  • Z. Wang, X. Y. Feng, and P. J. Wang, Study on magnetics and optical properties of transition metal doped SnO2 super lattice, J. Funct. Mater. 3, 03070 (2014).
  • Z. Wang, Y. Lu, and P. J. Wang, Study on electronic structure and optical properties of Fe and Mn co-doped SnO2 super lattice, J. Synth. Cryst. 42, 1429 (2013).
  • F. Ye et al., The field emission of Cu-doped ZnO, Phys. Status Solidi B. 249 (3), 596 (2012). DOI: 10.1002/pssb.201147252.
  • F. Ye et al., The field emission of indium-doped ZnO films fabricated by room temperature DC magnetron sputtering, Physica B Condens. Mater. 407 (1), 64 (2012). DOI: 10.1016/j.physb.2011.09.120.
  • F. Ye et al., Room temperature DC magnetron sputtering deposition and filed emission of Al-doped ZnO film, Phys. Status Solidi A. 208 (8), 1908 (2011). DOI: 10.1002/pssa.201127034.
  • B. Thangaraju, Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor, Thin Solid Films. 402 (1–2), 71 (2002). DOI: 10.1016/S0040-6090(01)01667-4.
  • G. Kresse, and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 11169 (1996). DOI: 10.1103/PhysRevB.54.11169.
  • G. Kresse, and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (3), 1758 (1999). DOI: 10.1103/PhysRevB.59.1758.
  • Q. Y. Hou et al., Effects of Cu doped ZnO diluted magnetic semiconductors on magnetic and electrical performance from simulation and calculation, Acta Phys. Sin. 64, 167201 (2015).
  • N. M. A. Hadia et al., Structure and photoluminescence properties of SnO2 nanowires synthesized from SnO powder. Eur. Phys. J. Appl. Phys. 48, 10603 (2009). DOI: 10.1051/epjap/2009128.
  • S. L. Yang et al., Significantly enhanced dye removal performance of hollow tin oxide nanoparticles via carbon coating in dark environment and study of its mechanism. Nanoscale Res. Lett. 9(1), 442 (2014)., DOI: 10.1186/1556-276X-9-442.
  • Y. Z. Guo, J. H. Wang, and R. A. Huang, Electrical and optical properties of transparent and conductive Sb-doped SnO2 films, J. Inorg. Mater. 17, 131 (2002).
  • A. Khudheir et al., Influence of copper doping on the structural and optical properties of sprayed SnO2 thin film, J. Electr. Devices. 14, 1170 (2012).
  • Y. F. Li et al., Role of donor-acceptor complexes and impurity band in stabilizing ferromagnetic order in Cu-doped SnO2 thin films. Appl. Phys. Lett. 100 (17), 172402 (2012)., DOI: 10.1063/1.4705419.
  • S. K. Ren, F. M. Zhang, and Y. W. Du, Half-metallic magnetic materials, Rep. Prog. Phys. 24, 381 (2004).
  • K. C. Zhang et al., Origin of ferromagnetism in Cu-doped SnO2: A first-principles study, J. Appl. Phys. 113 (5), 053713 (2013). DOI: 10.1063/1.4790425.
  • P. D. Borges et al., DFT study of the electronic, vibrational, and optical properties of SnO2, Theo. Chem. Acc. 126 (1–2), 39 (2010). DOI: 10.1007/s00214-009-0672-3.
  • C. Pawan, S. Bhamyarswa, and C. Amarjyoti, Structural and optical properties of Cu doped SnO2 nanoparticles: An experimental and density functional study, J. Appl. Phys. 113, 233514 (2013).
  • F. Miao, Y. Huang, and C. W. Zhang, Research for photoelectric property of SnO2 doped Cu. Bull. Chin. Ceram. Soc. 33, 3103 (2014).
  • M. Parthibavarman et al., Effect of copper on structural, optical and electrochemical properties of SnO2 nanoparticles, J. Optoelectron. Adv. M. 12, 1894 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.