49
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of pH value on particle morphology and electrochemical properties of LiFePO4/C by biosynthesis method

, , , , &
Pages 198-206 | Received 14 Oct 2018, Accepted 03 Feb 2019, Published online: 10 Sep 2019

References

  • B. Wang et al., A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv. Energy Mater. 6(16), 1600426 (2016). DOI: 10.1002/aenm.201600426.
  • J. L. Zhang et al., Boron and nitrogen co-doped carbon layers of LiFePO4 improve the high-rate electrochemical performance for lithium ion batteries. ACS Appl. Mater. Interfaces. 7(36), 20134 (2015). DOI: 10.1021/acsami.5b05398.
  • W. J. Feng et al., Effect of carbon nanotubes on the electrochemical performance of LiFePO4 particles in lithium ion batteries. Int. J. Electrochem. Sci. 12, 5199 (2017). DOI: 10.20964/2017.06.07.
  • W. W. Yang et al., Ultrathin LiFePO4 nanosheets self-assembled with reduced graphene oxide applied in high rate lithium ion batteries for energy storage. Appl. Energy. 195, 1079 (2017). DOI: 10.1016/j.apenergy.2016.06.047.
  • Z. Liu et al., Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4. J. Power Sources. 324, 358 (2016). DOI: 10.1016/j.jpowsour.2016.05.097.
  • B. Wang et al., Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale. 6(2), 986 (2014). DOI: 10.1039/C3NR04611G.
  • Y. Cao, W. J. Feng, and W. X. Su, Bio-synthesis of LiFePO4/C composites for lithium ion battery. Int. J. Electrochem. Sci. 12, 9084 (2017). DOI: 10.20964/2017.10.60.
  • X. D. Zhang et al., High-performance mesoporous LiFePO4 from Baker’s yeast. Colloids Surf. B. Biointerfaces. 103(103C), 114 (2013). DOI: 10.1016/j.colsurfb.2012.10.002.
  • Q. Z. Song et al., Effect of pH value on particle morphology and electrochemical properties of LiFePO4 by hydrothermal method. Mater. Res. Bull. 46(9), 1398 (2011). DOI: 10.1016/j.materresbull.2011.05.015.
  • M. Chen et al., High-performance LiFePO4 cathode material from FePO4 microspheres with carbon nanotube networks embedded for lithium ion batteries. J. Power Sources. 223, 100 (2013). (DOI: 10.1016/j.jpowsour.2012.09.040.
  • M. Y. Cho et al., Size-selective synthesis of mesoporous LiFePO4/C microspheres based on nucleation and growth rate control of primary particles. J. Mater. Chem. A. 2(16), 5922 (2014). DOI: 10.1039/C4TA00210E.
  • S. Bottoms et al., Chemical genomic guided engineering of gamma-valerolactone tolerant yeast. Microb. Cell Factories. 17(1), 5 (2018).
  • W. W. Xu et al., Synthesis and electrochemical properties of Li3V2(PO4)3/C cathode material with an improved sol–gel method by changing pH value. Electrochim. Acta. 113(4), 497 (2013). DOI: 10.1016/j.electacta.2013.09.126.
  • X. B. Liu et al., Influence of pH value on the properties of NH4Fe2(OH)(PO4)2·2H2O precursor and LiFePO4/C composite. J. Elec. Mater. . 44(3), 1008 (2015). DOI: 10.1007/s11664-014-3613-4.
  • Y. Yin et al., Electrochemical performance and capacity fading mechanism of LiFePO4 at different pH aqueous electrolyte solutions. Chin. J. Chem. Phys. 28(3), 315 (2015). DOI: 10.1063/1674-0068/28/cjcp1502020.
  • B. Wang et al., Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale. 7(19), 8819 (2015). DOI: 10.1039/C5NR01831E.
  • Y. C. Chang, C. T. Peng, and I. M. Hung, Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method. J. Mater. Sci. 49(20), 6907 (2014). DOI: 10.1007/s10853-014-8395-9.
  • G. Gao et al., Synthesis of LiFePO4/C as cathode material by a novel optimized hydrothermal method. Rare Met. 30(5), 433 (2011). DOI: 10.1007/s12598-011-0409-z.
  • G. Z. Dong et al., Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method. Appl. Energy. 162(1), 163 (2016). DOI: 10.1016/j.apenergy.2015.10.092.
  • J. L. Liu et al., The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values. J. Power Sources. 194(1), 536 (2009). DOI: 10.1016/j.jpowsour.2009.05.007.
  • T. F. Liu et al., The composite electrode of LiFePO4 cathode materials modified with exfoliated graphene from expanded graphite for high power Li-ion batteries. J. Mater. Chem. A. 2(8), 2822 (2014). DOI: 10.1039/C3TA14713D.
  • A. Varzi et al., Performance and kinetics of LiFePO4–carbon bi-material electrodes for hybrid devices: a comparative study between activated carbon and multi-walled carbon nanotubes. J. Power Sources. 273, 1016 (2015). DOI: 10.1016/j.jpowsour.2014.09.180.
  • R. W. Mo et al. , Pushing the limits: 3D layer-by-layer-assembled composites for cathodes with 160 C discharge rates. ACS Nano. 9(5), 5009 (2015). DOI: 10.1021/nn507186k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.