91
Views
0
CrossRef citations to date
0
Altmetric
Articles

Production and characterization of (K Na)(Nb Cu)O3 crystal fibers grown by micro-pulling-down method

, , , , &
Pages 89-96 | Received 17 Jun 2018, Accepted 01 Apr 2019, Published online: 22 Aug 2019

References

  • B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, UK, 1971).
  • Y. Saito et al., Lead-free piezoceramics, Nature. 432 (7013), 84 (2004). DOI: 10.1038/nature03028.
  • L. Wu et al., Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics, J. Appl. Phys. 103 (8), 084116 (2008). DOI: 10.1063/1.2907866.
  • J. Rodel et al., Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc. 89, 1153 (2009). DOI: 10.1111/j.1551-2916.2009.03061.x.
  • T. R. Shrout, and S. J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 111 (2007).
  • L. Egerton and D. M. Dillon, Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate, J. Am. Ceram. Soc. 42 (9), 438 (1959). DOI: 10.1111/j.1151-2916.1959.tb12971.x.
  • P. Bomlai et al., Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders, J. Am. Ceram. Soc. 90 (5), 1650 (2007). DOI: 10.1111/j.1551-2916.2007.01629.x.
  • D. W. Baker et al., A comprehensive study of the phase diagram of KxNa1-xNbO3, Appl. Phys. Lett. 95 (9), 091903 (2009). DOI: 10.1063/1.3212861.
  • A. Hussain et al., Dielectric, ferroelectric and field-induced strain behavior of K0.5Na0.5NbO3-modified Bi0.5(Na0.78K0.22)TiO3 lead-free ceramics, Ceram. Int. 38 (5), 4143 (2012). DOI: 10.1016/j.ceramint.2012.01.074.
  • P. K. Panda, Review: environmental friendly lead-free piezoelectric materials, J. Mater. Sci. 44 (19), 5049 (2009). DOI: 10.1007/s10853-009-3643-0.
  • K. Harada et al., Growth of Pb[(Zn1/3Nb2/3)0.91Tio.09]03 single crystal of ultrasonic transducer for medical application, J. Intelligent Mater. Syst. Struct. 10 (6), 493 (1999). DOI: 10.1106/UQ35-HFYR-PCX9-BPJL.
  • Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Edited by Zuo-Guang Ye (CRC Press, Boston, MA, 2008).
  • R. Saravanan et al., Crystal growth and dielectric property of Na0.5K0.5NbO3 and Mn-doped Na0.5K0.5NbO3 single crystal grown by flux method, Int. J. App. Phys. Mathem. 2, 208 (2012). DOI: 10.7763/IJAPM.2012.V2.91.
  • S. Wada et al., Enhanced piezoelectric properties of potassium niobate single crystals by domain engineering, Jpn. J. Appl. Phys. 43 (9B), 6692 (2004). DOI: 10.1143/JJAP.43.6692.
  • S. A. Sheets et al., Relaxor single crystals in the (Bi1/2Na1/2)1-xBaxZryTi1-yO3 system exhibiting high electrostrictive strain, J. Appl. Phys. 90 (10), 5287 (2001). DOI: 10.1063/1.1410325.
  • K. Chen et al., Dielectric and piezoelectric properties of lead-free 0.95(K0.5Na0.5)NbO3-0.05LiNbO3 crystals grown by the Bridgman method, J. Appl. Phys. 101 (4), 044103 (2007). DOI: 10.1063/1.2562464.
  • S. E. Park et al., Nonstoichiometry and the long‐range cation ordering in crystals of (Na1/2Bi1/2)TiO3, J. Am. Ceram. Soc. 77 (10), 2641 (1994). DOI: 10.1111/j.1151-2916.1994.tb04655.x.
  • S. E. Park, S. J. Chung, and I. T. Kim, Ferroic phase transitions in (Na1/2Bi1/2)TiO3 crystals, J. Am. Ceram. Soci. 79 (5), 1290 (1996). DOI: 10.1111/j.1151-2916.1996.tb08586.x.
  • Y. Hosono, K. Harada, and Y. Yamashita, Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3-BaTiO3, Jpn. J. Appl. Phys. 40 (Part 1, No. 9B), 5722 (2001). DOI: 10.1143/JJAP.40.5722.
  • T. V. Kruzina, V. M. Duda, and J. Suchanicz, Peculiarities of optical behavior of Na0.5Bi0.5TiO3 single crystals, J. Mater. Sci. Eng. 87 (1), 48 (2001). DOI: 10.1016/S0921-5107(01)00689-4.
  • V. I. Chani, K. Shimamura, and T. Fukuda, Flux growth of KNbO3 crystals by pulling‐down method, Cryst. Res. Technol. 34 (4), 519 (1999). DOI: 10.1002/(SICI)1521-4079(199904)34:4<519::AID-CRAT519>3.0.CO;2-A.
  • R. Komatsu et al., KNbO3 plate crystal grown by micro-pulling-down method from stoichiometric melt, J. Crystal Growth. 401, 772 (2014). DOI: 10.1016/j.jcrysgro.2013.12.071.
  • R. Komatsu, Y. Okuma, H. Itoh, and Y. Akishige, Growth and characterization of potassium niobate fiber crystal from liquid with stoichiometric composition by μ‐PD method, Electron. Comm. Jpn. . 95, 1126 (2012). DOI: 10.1002/ecj.10411.
  • E. C. Subbarao, Studies on lead titanate ceramics containing niobium or tantalum, J. Am. Ceram. Soc. 43 (3), 119 (1960). DOI: 10.1111/j.1151-2916.1960.tb14324.x.
  • T. Y. Tien, and W. G. Carlson, Effect of additives on properties of lead titanate, J. Am. Ceram. Soc. 45 (12), 567 (1962). DOI: 10.1111/j.1151-2916.1962.tb11060.x.
  • B. Malic et al., Linear thermal expansion of lead-free piezoelectric K0.5Na0.5NbO3 ceramics in a wide temperature range, J. Am. Ceram. Soc. 94, 2273 (2011). DOI: 10.1111/j.1551-2916.2011.04628.x.
  • J. Tellier et al., Extremely temperature-stable piezoeletric properties of ortorrombic phase in (K, Na)NbO3 – based ceramics, Solid State Sci. 11 (2), 320 (2009). DOI: 10.1016/j.solidstatesciences.2008.07.011.
  • S. Zhang et al., Characterization of hard piezoelectric lead-free ceramics, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56 (8), 1523 (2009). DOI: 10.1109/TUFFC.2009.1215.
  • F. Azough et al., Microstructure and piezoelectric properties of CuO added (K, Na, Li)NbO3 lead-free piezoelectric ceramics, J. Eur. Ceram. Soc. 31 (4), 569 (2011). DOI: 10.1016/j.jeurceramsoc.2010.10.033.
  • H.-Y. Park et al., Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc. 91 (7), 2374 (2008). DOI: 10.1111/j.1551-2916.2008.02408.x.
  • E. M. Alkoy, and M. Papila, Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics, Ceram. Int. 36 (6), 1921 (2010). DOI: 10.1016/j.ceramint.2010.03.018.
  • H. S. Han et al., Hardening behavior and highly enhanced mechanical quality factor in(K0.5Na0.5)NbO3-based ceramics, J. Eur. Ceram. Soc. 37 (5), 2083 (2017).
  • T. Limboeck and E. Soergel, Evolution of ferroelectric domain patterns in BaTiO3 at the orthorhombic ↔ tetragonal phase transition, Appl. Phys. Lett. 105 (15), 152901 (2014).
  • E. Wiesendanger, Domain structures in orthorhombic KNbO3 and characterisation of single domain crystals, Czech. J. Phys. 23 (1), 91 (1973). DOI: 10.1007/BF01596882.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.