126
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermal decomposition, kinetics and electrical measurements of Poly(3-Acetamidopropyl Methacrylate)/graphite composites

&
Pages 51-75 | Received 27 Jun 2018, Accepted 09 Mar 2019, Published online: 31 Oct 2019

References

  • P. B. Jana, A. K. Mallick, and S. K. De, Electromagnetic interference shielding by carbon fibre filled polychloroprene rubber composites, Polymer Compos. 22 (6), 451 (1991). DOI: 10.1016/0010-4361(91)90204-T.
  • J. Navora et al., Electrochemical behaviour and electricalpercolation in graphite-epoxy electrodes, J. Mater. Sci. 29, 4604 (1994). DOI: 10.1007/BF00376284.
  • S. Abdul Jawad, J. Al-Jundi, and H. M. El-Ghanem, DC electrical properties of graphytized carbonblack filled rubbers, Int. J. Polmeric Mater. 52 (9), 809 (2003). DOI: 10.1080/713743711.
  • R. Sengupta et al., A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites, Prog. Polym. Sci. 36 (5), 638 (2011). DOI: 10.1016/j.progpolymsci.2010.11.003.
  • G. H. Chen et al., Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites, Polym. Eng. Sci. 41 (12), 2148 (2001). DOI: 10.1002/pen.10909.
  • I. Tavman et al., Effects of conductive graphite filler loading on physical properties of high-density polyethylene composite electrochemical behaviour and electrical, Polym. Compos. 33 (7), 1071 (2012). DOI: 10.1002/pc.22230.
  • P. Brochu, and Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles, Macromol. Rapid Commun. 3, 10 (2010). DOI: 10.1002/marc.200900425.
  • W. P. Shih et al., Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite, Sensors. 10 (4), 3597 (2010). DOI: 10.3390/s100403597.
  • I. S. Elashmawi, N. S. AIatawia, and N. H. Elsayed, Preparation and characterization of polymer nanocomposites based on PVDF/PVC doped with graphene nanoparticles, Results Phys. 7, 636 (2017). DOI: 10.1016/j.rinp.2017.01.022.
  • K. Chrissafis et al., Thermal and dynamic mechanical behavior of bionanocomposites: Fumed silica nanoparticles dispersed in Poly(vinyl pyrrolidone), Chitosan, and Poly(vinyl alcohol), J. Appl. Polym. Sci. 110 (3), 1739 (2008). DOI: 10.1002/app.28818.
  • S. Etienne et al., Effects of incorporation of modified silica nanoparticles on the mechanical and thermal properties of PMMA, J. Therm. Anal. Calorim. 87 (1), 101 (2007). DOI: 10.1007/s10973-006-7827-4.
  • A. A. Vassiliou, K. Chrissafis, and D. N. Bikiaris, Thermal degradation kinetics of in situ prepared PET nanocomposites with acid-treated multi-walled carbon nanotubes, J. Therm. Anal. Calorim. 100 (3), 1063 (2010). DOI: 10.1007/s10973-009-0426-4.
  • W. Xie et al., Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite, Chem. Mater. 13 (9), 2979 (2001). DOI: 10.1021/cm010305s.
  • H. L. Qin et al., The influence of interlayer cations on the photo-oxidative degradation of polyethylene/montmorillonite composites, J. Polym. Sci. B Polym. Phys. 42 (16), 3006 (2004). DOI: 10.1002/polb.20068.
  • O. Probst et al., Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes, Polymer. 45 (13), 4437 (2004). DOI: 10.1016/j.polymer.2004.04.031.
  • P. Simon, Isoconversional methods fundamentals, meaning and application, J. Thermal Anal. Calori. 76, 123 (2004).
  • J. H. Flynn, and L. A. Wall, General treatment of the thermogravimetry of polymers, J. Res. Natl. Bur. Stan. Sect. A. 70, 487 (1996). DOI: 10.6028/jres.070A.043.
  • T. Ozawa, A new method of analyzing thermogravimetric data, BCSJ. 38 (11), 1881 (1965). DOI: 10.1246/bcsj.38.1881.
  • M. A. Zoglio et al., Linear nonisothermal stability studies, Pharm. Sci. Linear Nonisothermal Stab. Stud. 57, 2080 (1968). DOI: 10.1002/jps.2600571211.
  • C. D. Doyle, Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci. 6 (24), 639 (1962). DOI: 10.1002/app.1962.070062406.
  • M. E. Brown, M. Maciejewski, and S. Vyazovkin, Kinetics analysis project, J. Thermal Anal. Calori. 51, 327 (1998).
  • S. Vyazovkin et al., ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations, Thermochimica. Act. 590, 1 (2014). DOI: 10.1016/j.tca.2014.05.036.
  • R. Liu et al., Synthesis, characterization and thermal decomposition of novel soluble copoly(aryl ether nitrile) containing phthalazinone and biphenyl moieties, Polym. Bull. 73 (7), 1811 (2016). DOI: 10.1007/s00289-015-1578-y.
  • X. She et al., Kong molecular-level dispersion of graphene into epoxidized natural rubber: Morphology, interfacial interaction and mechanical reinforcement, Polymer. 55 (26), 6803 (2014). DOI: 10.1016/j.polymer.2014.10.054.
  • F. Biryan et al., Synthesis, thermal degradation and dielectric properties of poly[2-hydroxy,3-(1-naphthyloxy)propyl methacrylate], Polym. Bull. 74 (2), 583 (2017). DOI: 10.1007/s00289-016-1731-2.
  • K. Demirelli et al., Thermal degradation of two different polymers bearing amide pendant groups prepared by ATRP method, J. Therm. Anal. Calorim. 114 (2), 917 (2013). DOI: 10.1007/s10973-013-2986-6.
  • C. González-Guisasola, and A. Ribes-Greus, Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells, Polymer Testing. 67, 55 (2018). DOI: 10.1016/j.polymertesting.2018.01.024.
  • F. Biryan, and K. Demirelli, Temperature-frequency dependence on electrical properties of EuCI3 based composites, thermal behaviors and preparation of poly(3-acetamidopropyl acrylate), Ferroelectr. 526 (1), 76 (2018). DOI: 10.1080/00150193.2018.1456278.
  • B. Sergejus et al., Dielectric properties of BaTiO3-KNbO3 composites, Ferroelectr. 512, 8 (2017).
  • L. K. Sudha, R. Sukumar, and K. U. Rao, Evaluation of activation energy (Ea) profiles of nanostructured alumina polycarbonate composite insulation materials, Int. J. Mater., Mech. Manufact. 2, 96 (2014). DOI: 10.7763/IJMMM.2014.V2.108.
  • A. K. Jonscher, Electronic properties of amorphous dielectric films, Thin Solid Films. 1 (3), 213 (1967). DOI: 10.1016/0040-6090(67)90004-1.
  • M. F. Coşkun et al., Thermal decomposition of poly[3-phthalimido-2- hydroxypropyl methacrylate], Polym Degrad Stab. 76 (1), 145 (2002). DOI: 10.1016/S0141-3910(02)00008-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.