78
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of sintering time on microstructure and electric properties of Ba0.7Sr0.3TiO3 ceramics

, , , , , & show all
Pages 5-16 | Received 31 Dec 2018, Accepted 04 Aug 2019, Published online: 03 Dec 2019

References

  • Z. Y. Sun et al., Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. Crystengcomm 19(24), 3288 (2017). DOI: 10.1039/C7CE00279C.
  • A. T. Mofassal, M. Tajally, and O. Mirzaee, Comparison between microwave and conventional calcination techniques in regard to reactivity and morphology of co-precipitated BaTiO3 powder, and the electrical and energy storage properties of the sintered samples. Ceram. Int. 43(11), 8057 (2017). DOI: 10.1016/j.ceramint.2017.03.126.
  • H. Z. Akbas et al., Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics. Ultrason. Sonoche. 34, 873 (2017). DOI: 10.1016/j.ultsonch.2016.07.027.
  • D. Y. Lu et al., Dielectric properties and defect chemistry of barium titanate ceramics co-doped R and Dy ions (R = Eu, Gd, Tb). Ceram. Int. 42(13), 14364 (2016). DOI: 10.1016/j.ceramint.2016.05.197.
  • G. S. Jeon et al., Improved breakdown strength and energy density in thin-film polyimide nanocomposites with small barium strontium titanate nanocrystal fillers. J Phys. Chem. C 117, 6958 (2016).
  • L. M. Garten et al., Trolier-McKinstry S: Relaxor ferroelectric behavior in barium strontium titanate. J. Am. Ceram. Soc. 99(5), 1645 (2016). DOI: 10.1111/jace.14109.
  • S. Dupuis et al., Colossal permittivity and low losses in Ba1–xSrxTiO3–δ reduced nanoceramics. J Eur. Ceram. Soc. 36(3), 567 (2016). DOI: 10.1016/j.jeurceramsoc.2015.10.017.
  • J. Guo et al., Cold sintering process: A new era for ceramic packaging and microwave device development. J. Am. Ceram. Soc. 100(2), 669 (2017). DOI: 10.1111/jace.14603.
  • W. L. Huo et al., Highly porous barium strontium titanate (BST) ceramic foams with low dielectric constant from particle‐stabilized foams. J. Am. Ceram. Soc. 101(4), 1737 (2018). DOI: 10.1111/jace.15305.
  • Y. H. Huang et al., Enhanced energy storage properties of barium strontium titanate ceramics prepared by sol-gel method and spark plasma sintering. J. Alloys Compd. 701, 439 (2017). DOI: 10.1016/j.jallcom.2017.01.150.
  • H. F. He et al., Effects of sintering temperature on microstructure, electric properties of Ba0.7Sr0.3TiO3 ceramics. in Advanced Functional Materials CMC, edited by Y. Han (Springer, Singapore, 2018), pp 587–598.
  • W. Cai et al., Effect of hafnium on the microstructure, dielectric and ferroelectric properties of Ba[Zr0.2Ti0.8]O3 ceramics. Ceram. Int. 38(4), 3367 (2012). DOI: 10.1016/j.ceramint.2011.12.047.
  • A. Mohamed et al., Mohamed D: Synthesis, structural and dielectric properties of Ho-doped SrBi2Nb2O9 prepared by Co-precipitation method. Sci. China Mater. 59(11), 921 (2016).
  • S. K. Ghosh, S. K. Deshpande, and S. K. Rout, Concentration-driven structural stability and dielectric dispersion in lead free (Ba1−xSc2x/3)Zr0.3Ti0.7O3 ceramics. J. Mater. Sci: Mater. Electron. 28(2), 1336 (2017). DOI: 10.1007/s10854-016-5665-0.
  • A. K. Axelsson et al., Electrocaloric effect in lead-free Aurivillius relaxor ferroelectric ceramics. Acta Mater. 124, 120 (2017). DOI: 10.1016/j.actamat.2016.11.001.
  • C. Kittel, P. McEuen, and P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1996).
  • K. H. Chen et al., Improvement on oxygen vacancies effect of high dielectric constant (Ba0.7Sr0.3)(Ti0.9Zr0.1)O3 thin films using by plasma treatment. Adv. Mater. Res. 239–242, 1002 (2011). DOI: 10.4028/www.scientific.net/AMR.239-242.1002.
  • F. Rubio-Marcos et al., Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics. Mater. Chem. Phys. 123(1), 91 (2010). DOI: 10.1016/j.matchemphys.2010.03.065.
  • X. J. Wang et al., Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl. Phys. Lett. 110(6), 063904 (2017). DOI: 10.1063/1.4976026.
  • S. H. Yan et al., Effect of internal stresses on temperature-dependent dielectric properties of Fe-doped BZT ceramics. Ceram. Int. 43(15), 12605 (2017). DOI: 10.1016/j.ceramint.2017.06.138.
  • Q. Jin et al., Microstructure, dielectric properties and energy storage performance of Ba0.4Sr0.6TiO3 ceramics prepared by hydrothermal method and microwave sintering. Mater. Lett. 188, 159 (2017). DOI: 10.1016/j.matlet.2016.11.032.
  • C. L. Mao et al., Effect of grain size on phase transition, dielectric and pyroelectric properties of BST ceramics. J. Eur. Ceram. Soc. 34(12), 2933 (2014). DOI: 10.1016/j.jeurceramsoc.2014.04.005.
  • R. A. Mondal, B. S. Murty, and V. R. K. Murthy, Grain size dependent phase transition and superparaelectric behavior of ferroelectric BST. Phys. B 461, 10 (2015). DOI: 10.1016/j.physb.2014.12.011.
  • L. E. Cross, Relaxor ferroelectric. Ferroelectrics 76(1), 241 (1987). DOI: 10.1080/00150198708016945.
  • J. F. Scott, A review of ferroelectric switching. Ferroelectrics 503(1), 117 (2016). DOI: 10.1080/00150193.2016.1236611.
  • L. Chen et al., Magnetoelectric relaxor and reentrant behaviours in multiferroic Pb(Fe2/3W1/3)O3 crystal. Sci. Rep. 6(1), 22327 (2016). DOI: 10.1038/srep22327.
  • M. J. Ansaree, U. Kumar, and S. Upadhyay, Solid-state synthesis of nano-sized Ba(Ti1−xSnx)O3 powders and dielectric properties of corresponding ceramics. Appl. Phys. A 123(6), 432 (2017).
  • S. A. Qaisar, T. P. Comyn, and A. J. Bell, Temperature dependence of domain contributions as a function of aging in soft and hard lead zirconate titanate piezoelectric ceramics. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 64(6), 1023 (2017). DOI: 10.1109/TUFFC.2017.2686490.
  • X. L. Zhu, and X. M. Chen, Ferroelectric properties and polarization dynamics in Ba4Sm2Ti4Ta6O30 tungsten bronze ceramics. Appl. Phys. Lett. 108(15), 152903 (2016). DOI: 10.1063/1.4945742.
  • A. M. Gonçalves et al., Domain structure and polarization reversal in ferroelectric lanthanum-modified lead titanate ceramics investigated by piezoresponse force microscopy. J. Mater. Sci. 51(8), 4061 (2016). DOI: 10.1007/s10853-016-9726-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.