60
Views
5
CrossRef citations to date
0
Altmetric
Articles

Optical and Structural Changes in Swift Heavy Ion Irradiated Selenium Based Amorphous Chalcogenides for Optical Applications

, &
Pages 74-86 | Received 13 Jan 2019, Accepted 05 Jun 2019, Published online: 03 Dec 2019

References

  • V. Dimitrov, and T. Komatsu, Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses, J. Non-Cryst. Solids. 249 (2–3), 160 (1999). DOI: 10.1016/S0022-3093(99)00317-8.
  • F. Qiu, T. Narusawa, and J. Zheng, Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions, Appl. Opt. 50 (5), 733 (2011). DOI: 10.1364/AO.50.000733.
  • R. Chauhan, S. Pandey, and S. G. Prasad, Effect of 80 MeV Si Swift Heavy Ion irradiation on Ge22Se78 thin film for optical applications, Chalc. Lett. 15, 267 (2018).
  • R. Chauhan, and K. K. Srivastava, Swift-heavy ion-induced effects on optical and dielectric properties of Ge7As39Se54 thin films, Mater. Focus. 6, 1 (2017).
  • R. Chauhan et al., Effect of swift heavy ion on optical and structural properties of amorphous Ge-As-Se thin films, Chalc. Lett. 10, 63 (2013).
  • R. Chauhan, A. Tripathi, and K. K. Srivastava, High-energy ion treatment of amorphous As40Se60 thin films for optical applications, Prog. Nat. Sci.: Mater. Int. 24 (3), 239 (2014). DOI: 10.1016/j.pnsc.2014.05.006.
  • A. Kumar et al., 100 MeV Ag ions irradiation effects on the optical properties of Ag0.10(Ge0.20Se0.80)0.90 thin films, J. Phys. D: Appl. Phys. 43 (9), 095302 (2010).DOI: 10.1088/0022-3727/43/9/095302.
  • M. S. Kamboj et al., Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films, J. Phys. D: Appl. Phys. 35 (5), 477 (2002). DOI: 10.1088/0022-3727/35/5/310.
  • M. S. Kamboj et al., 40 MeV 28Si5+ ion induced blue shift in optical band gap of amorphous Se80-xTe20Pbx thin films, Nucl. Instrum. Methods B. 211 (3), 369 (2003). DOI: 10.1016/S0168-583X(03)01372-7.
  • M. Toulemonde, C. Dufour, and E. Paumier, Transient thermal process after a high-energy heavy-ion irradiation of amorphous metal and semiconductors, Phys. Rev. B. 46 (22), 14362 (1992). DOI: 10.1103/PhysRevB.46.14362.
  • R. L. Fleischer, P. B. Price, and R. M. Walker, Ion explosion spike mechanism for formation of charged-particle tracks in solids, J. Appl. Phys. 36 (11), 3645 (1965). DOI: 10.1063/1.1703059.
  • R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E: Sci. Instrum. 16 (12), 1214 (1983). DOI: 10.1088/0022-3735/16/12/023.
  • R. Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous thin films, J. Phys. E: Sci. Instrum. 17 (10), 896 (1984). DOI: 10.1088/0022-3735/17/10/023.
  • S. H. Wemple, and M. DiDomenico, Behaviour of the electronic and dielectric constant in covalent and ionic materials, Phys. Rev. B. 3 (4), 1338 (1971). DOI: 10.1103/PhysRevB.3.1338.
  • V. Dimitrov, and S. Sakka, Linear and nonlinear optical properties of simple oxides. II, J. Appl. Phys. 79 (3), 1741 (1996). DOI: 10.1063/1.360963.
  • J. Tauc, Optical Properties of Amorphous Semiconductors; Amorphous and Liquid Semiconductors (London and New York; Plenum Press 1974), 159–220.
  • N. L. Boling, A. J. Glass, and A. Owyoung, Empirical relationships for predicting nonlinear refractive index changes in optical solids, IEEE J. Quantum Electron. 14 (8), 601 (1978). DOI: 10.1109/JQE.1978.1069847.
  • H. Tichá, and L. Tichý, Semiempirical relation between nonlinear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides, J. Opt. Adv. Mat. 4, 381 (2002).
  • E. W. V. Stryland et al., Characterization of nonlinear optical absorption and refraction, Prog. Crystal Growth Charact. 27, 279 (1993). DOI: 10.1016/0960-8974(93)90026-Z.
  • P. K. Dwivedi et al., Raman study of ion irradiated GeSe films, J. Non-Cryst. Solids. 266 (269), 924 (2000). DOI: 10.1016/S0022-3093(99)00867-4.
  • S. Lu et al., Third order nonlinear optical property of Bi2Se3, Opt. Express. 21 (2), 2072 (2013). DOI: 10.1364/OE.21.002072.
  • B. J. Eggleton, B. Luther-Davies, and K. Richardson, Chalcogenide photonics, Nature Photon. 5 (3), 141 (2011). DOI: 10.1038/nphoton.2011.309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.