123
Views
0
CrossRef citations to date
0
Altmetric
Articles

Temperature-dependent dynamic hysteresis scaling of ferroelectric hysteresis parameters of lead free [(Ba0.825+xCa0.175−x)(Ti1−xSnx)O3]ceramics

, , &
Pages 133-142 | Received 07 Aug 2018, Accepted 13 Jun 2019, Published online: 03 Dec 2019

References

  • S. A. Wilson et al., New materials for micro-scale sensors and actuators: an engineering review. Mat. Sci. Eng. R. 56 (1-6), 1 (2007). DOI: 10.1016/j.mser.2007.03.001.
  • D. Lin, K. Kwok, and H. Chan, Structure and electrical properties of Bi0.5 Na0.5 TiO3 -BaTiO3 -Bi0.5 Li0.5 TiO3 lead-free piezoelectric ceramics. Solid State Ion. 178, 1930 (2008). DOI: 10.1016/j.ssi.2007.12.096.
  • G. Ray, et al., Excellent piezo-/pyro-/ferroelectric performance of Na0.47 K0.47 Li0.06 NbO3 lead-free ceramic near polymorphic phase transition. Scr. Mater. 99, 77 (2015). DOI: 10.1016/j.scriptamat.2014.11.033.
  • M. Acosta et al., BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4 (4), 041305 (2017). DOI: 10.1063/1.4990046.
  • K. S. Srikanth, et al., Engineered microstructure for tailoring the pyroelectric performance of Ba0.85Sr0.15Zr0.1Ti0.9O3 ceramics by 3BaO-3TiO2-B2O3 glass addition. Appl. Phys. Lett. 110 (23), 232901 (2017).
  • K. S. Srikanth, V. P. Singh, and R. Vaish, Enhanced pyroelectric figure of merits of porous BaSn0.05Ti0.95O3 ceramics. J. Eur. Ceram. Soc. 37 (13), 3943 (2017). DOI: 10.1016/j.jeurceramsoc.2017.05.015.
  • K. S. Srikanth, and R. Vaish, Enhanced electrocaloric, pyroelectric and energy storage performance of BaCexTi1−xO3 ceramics. J. Eur. Ceram. Soc. 37 (13), 3927 (2017). DOI: 10.1016/j.jeurceramsoc.2017.04.058.
  • M. Sharma, et al., Pyroelectric materials for solar energy harvesting: a comparative study. Smart Mater. Struct. 24 (10), 105013 (2015). DOI: 10.1088/0964-1726/24/10/105013.
  • M. Sharma, V. S. Chauhan, and R. Vaish, Energy and exergy analysis of pyroelectric-based solar energy harvesting system. Energy Tech. 3 (12), 1271 (2015). DOI: 10.1002/ente.201500230.
  • D. Sharma, et al., Thermal energy harvesting and temperature dependent dynamic hysteresis analysis for Ba0.85Ca0.15Ti0.9-xFexZr0.1O3 ceramics. J. Asian Ceram. Soc. 4, 102 (2016). DOI: 10.1016/j.jascer.2015.12.005.
  • S. Patel, A. Chauhan, and R. Vaish, Mechanical confinement for tuning ferroelectric response in PMN-PT single crystal. J. Appl. Phys. 117 (8), 084102 (2015). DOI: 10.1063/1.4908596.
  • A. Kumar et al., Lead-free pyroelectric materials for thermal energy harvesting: a comparative study. Energy Technol. 6 (5), 943 (2018). DOI: 10.1002/ente.201700819.
  • K. S. Srikanth, S. Patel, and R. Vaish, Pyroelectric performance of BaTi1-xSnxO3 ceramics. Int. J. Appl. Ceram. Technol. 15 (2), 546 (2018). DOI: 10.1111/ijac.12814.
  • K. S. Srikanth, S. Patel, and R. Vaish, Functional cementitious composites for pyroelectric applications. J. Electron. Mater. 47 (4), 2378 (2018). DOI: 10.1007/s11664-018-6071-6.
  • M. Sharma et al., Porous Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics for pyroelectric applications. J. Electron. Mater. 47 (8) (2018).
  • S. Singh, K. S. Srikanth, and B. Singh, Pyroelectric performance of [(1-x)Ba0.9Ca0.1TiO3-x(BaSn0.2Ti0.8O3)] lead free ceramics. Ferroelectrics. 526 (1), 68 (2018).
  • S. Patel et al., Thermo-mechanical energy conversion potential in lead free 0.50Ba(Zr0.2Ti0.8)O3-0.50(Ba0.7Ca0.3)TiO3 bulk ceramics. Energy Technol. 5, 1 (2017). DOI: 10.1002/ente.201700416.
  • K. S. Srikanth, V. P. Singh, and R. Vaish, Pyroelectric performance of porous Ba0.85Sr0.15TiO3 ceramics. Int. J. Appl. Ceram. Technol. 15 (1), 140 (2018). DOI: 10.1111/ijac.12764.
  • R. Varatharajan et al., Ferroelectric characterization studies on barium calcium titanate single crystals. Mater. Charact. 45 (2), 89 (2000). DOI: 10.1016/S1044-5803(00)00053-X.
  • M. Vaish, et al., Electrical energy generation from hot/cold air using pyroelectric ceramics. Integr. Ferroelectr. 167 (1), 90 (2015). DOI: 10.1080/10584587.2015.1106876.
  • M. Vaish et al., An experimental study on thermal energy harvesting using Ca0.15(Sr0.5Ba0.5)0.85Nb2O5 pyroelectric ceramics. Ferroelectr Lett. Sect. 43 (1-3), 52 (2016). DOI: 10.1080/07315171.2017.1320194.
  • P. Hansen, D. Hennings, and H. Schreinemacher, High-K dielectric ceramics from donor/acceptor-codoped (Ba1−xCax)(Ti1-yZry)O3 (BCTZ). J. Am. Ceram. Soc. 81 (5), 1369 (2005). DOI: 10.1111/j.1151-2916.1998.tb02494.x.
  • M. Sharma, V. S. Chauhan, and R. Vaish, Development of figures of merits for pyroelectric energy harvesting devices. Energy Technol. 4 (7), 843 (2016). DOI: 10.1002/ente.201500510.
  • R. Yimnirun, et al., Uniaxial stress dependence and scaling behavior of dynamic hysteresis responses in soft PZT ceramics, in: applications of ferroelectrics, 2006. IASF ’06. 15th IEEE international symposium on the IEEE, 2006, 37–40a (2006).
  • M. Vaish, et al., Capacitor and battery charging from hot/cold air using pyroelectric ceramics. Integr. Ferroelectr. 176 (1), 160 (2016). DOI: 10.1080/10584587.2016.1252240.
  • S. Patel, A. Chauhan, and R. Vaish, Electrocaloric behavior and temperature-dependent scaling of dynamic hysteresis of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics. Int. J. Appl. Ceram. Technol. 12 (4), 899 (2015). DOI: 10.1111/ijac.12418.
  • J. Liu, et al., Dynamic hysteresis dispersion scaling of ferroelectric Nd-substituted Bi4 Ti3 O12 thin films. J. Phys: Condens. Matter. 16 (8), 1189 (2004). DOI: 10.1088/0953-8984/16/8/005.
  • N. Wong damnern et al., Dynamic ferroelectric hysteresis scaling of BaTiO3 single crystals. J. Appl. Phys. 105, 044109 (2009). DOI: 10.1063/1.3086317.
  • S. Singh, K. S. Srikanth, and B. Singh, Temperature dependent dynamic hysteresis scaling of ferroelectric hysteresis parameters of [(1-x)Ba0.9Ca0.1TiO3-x(BaSn0.2Ti0.8O3)] ceramics. Ferroelectr. Lett. Sect. 44 (4-6), 101 (2017). DOI: 10.1080/07315171.2017.1397462.
  • R. Yimnirun et al., Stress-and temperature-dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics. Phys. Scr. T129 2007, 184 (2007). DOI: 10.1088/0031-8949/2007/T129/042.
  • V. S. Puli et al., Synthesis and characterization of lead-free ternary component BST–BCT–BZT ceramic capacitors. J. Adv. Dielectr. 04 (02), 1450014 (2014). DOI: 10.1142/S2010135X14500143.
  • H. Sun et al., Effects of CuO additive on structure and electrical properties of low-temperature sintered Ba0.98 Ca0.02 Zr0.02 Ti0.98 O3 lead-free ceramics. Ceram. Int. 41 (1), 555 (2015). DOI: 10.1016/j.ceramint.2014.08.104.
  • S. Patel, et al., Effect of sintering parameters on the dynamic hysteresis scaling behavior of Ba0.85Sr0.15Zr0.1Ti0.9O3 ceramics. Integr. Ferroelectr. 176 (1), 95 (2016). DOI: 10.1080/10584587.2016.1249269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.