121
Views
2
CrossRef citations to date
0
Altmetric
Articles

Preparation of graphene via modified redox method and its electronic performance

, , , &

References

  • M. S. Poorali, and M. M. Bagheri-Mohagheghi, Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap, J. Mater. Sci: Mater. Electron. 27(1), 260 (2016). DOI: 10.1007/s10854-015-3749-x.
  • A. Ciesielski, and P. Samorì, Graphene via sonication assisted liquid-phase exfoliation, Chem. Soc. Rev. 43(1), 381 (2014). DOI: 10.1039/C3CS60217F.
  • R. Wang et al., A simplified chemical reduction method for preparation of graphene: Dispersity, reducibility and mechanism, Ceram. Int. 42(16), 19042 (2016). DOI: 10.1016/j.ceramint.2016.09.061.
  • B. Guo et al., Graphene doping: A review, Insci. J. 1(2), 80 (2011). DOI: 10.5640/insc.010280.
  • M. Vikkisk et al., Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media, Appl. Catal. B Environ. 147(7), 369 (2014). DOI: 10.1016/j.apcatb.2013.09.011.
  • L. Qu et al., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 4(3), 1321 (2010). DOI: 10.1021/nn901850u.
  • W. Chen, L. Yan, and P. R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon 48(4), 1146 (2010). DOI: 10.1016/j.carbon.2009.11.037.
  • L. Peng et al., Recent progresses in application of functionalized graphene sheets, Sci. China Technol. Sci. 53(9), 2311 (2010). DOI: 10.1007/s11431-010-4050-0.
  • S. Wang et al., Thermal expansion of graphene composites, Chem. Mater. 42(14), 5251 (2009). DOI: 10.1021/ma900631c.
  • C. M. Zhen et al., Methods of graphite exfoliation, J. Mater. Chem. 22(48), 24992 (2012). DOI: 10.1039/c2jm34517j.
  • A. L. M. Reddy et al., Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano 4(11), 6337 (2010). DOI: 10.1021/nn101926g.
  • M. Choucair, P. Thordarson, and J. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nat. Nanotechnol. 4(1), 30 (2009). DOI: 10.1038/nnano.2008.365.
  • L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, Boron and nitrogen-doped carbon nanotubes and grapheme, Inorg. Chim. Acta 363(15), 4163 (2010). DOI: 10.1016/j.ica.2010.07.057.
  • S. Nyoni, and T. Nyokong, Electrocatalytic behaviour of cobalt tetraamino-phthalocyanine in the presence of a composite of reduced graphene nanosheets and of multi-walled carbon nanotubes, Electrochim. Acta 136, 240 (2014). DOI: 10.1016/j.electacta.2014.05.093.
  • C. W. Foster et al., Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes, Sensors 14(11), 21905 (2014). DOI: 10.3390/s141121905.
  • W. J. Lee et al., Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications, Chem. Commun. 50(52), 6818 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.