175
Views
4
CrossRef citations to date
0
Altmetric
Articles

High-field nonlinear properties and characteristics of domain wall motion in Fe2O3 doped PMnS-PZN-PZT ceramics

, , , , &
Pages 110-122 | Received 28 Aug 2019, Accepted 25 Nov 2019, Published online: 26 May 2020

References

  • W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: Evolution and Future of a Technology (Springer, Berlin, 2008).
  • A. Safari, and E. K. Akdoğan, Piezoelectric and Acoustic Materials for Transducer Applications (Springer, New York, 2008).
  • K. Uchino, Piezoelectric ultrasonic motors: Overview, Smart Mater. Struct. 7 (3), 273 (1998). DOI: 10.1088/0964-1726/7/3/002.
  • S. Zhang et al., Characterization of hard piezoelectric lead-free ceramics, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 56, 1523 (2009). DOI: 10.1109/TUFFC.2009.1215.
  • D. Damjanovic, Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics, J. Am. Ceramic Soc. 88 (10), 2663 (2005). DOI: 10.1111/j.1551-2916.2005.00671.x.
  • G. Liu et al., Losses in ferroelectric materials, Mater. Sci. Eng. R. 89, 1 (2015). DOI: 10.1016/j.mser.2015.01.002.
  • K. Uchino et al., Loss mechanisms and high power piezoelectrics, J. Mater. Sci. 41 (1), 217 (2006). DOI: 10.1007/s10853-005-7201-0.
  • K. H. Härdtl, Electrical and mechanical losses in ferroelectric ceramics, Ceram. Int. 8 (4), 121 (1982). DOI: 10.1016/0272-8842(82)90001-3.
  • A. Chandrasekaran et al., Defect ordering and defect − domain-wall interactions in PbTiO3: A first-principles study, Phys. Rev. B. 88 (21), 214116 (2013). DOI: 10.1103/PhysRevB.88.214116.
  • D. A. Ochoa et al., Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics, J. Phys. D: Appl. Phys. 42 (2), 025402 (2009). DOI: 10.1088/0022-3727/42/2/025402.
  • B. Peng, Z. Yue, and L. Li, Evaluation of domain wall motion during polymorphic phase transition in (K,Na)NbO3-based piezoelectric ceramics by nonlinear response measurements, J. Appl. Phys. 109 (5), 054107 (2011). DOI: 10.1063/1.3553857.
  • J. Gao et al., Major contributor to the large piezoelectric response in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics: Domain wall motion, Appl. Phys. Lett. 104 (25), 252909 (2014). DOI: 10.1063/1.4885675.
  • N. Kumar, T. Y. Ansell, and D. P. Cann, Role of point defects in bipolar fatigue behavior of Bi(Mg1/2Ti1/2)O3 modified (Bi1/2K1/2)TiO3-(Bi1/2Na1/2)TiO3 relaxor ceramics, J. Appl. Phys. 115 (15), 154104 (2014). DOI: 10.1063/1.4871671.
  • J. E. Garcia et al., Non-linear dielectric and piezoelectric response in undoped and Nb5+ or Fe3+ doped PZT ceramic system, J. Eur. Ceram. Soc. 27 (13–15), 4029 (2007). DOI: 10.1016/j.jeurceramsoc.2007.02.086.
  • D. A. Ochoa et al., Extrinsic response enhancement at the polymorphic phase boundary in piezoelectric materials, Appl. Phys. Lett. 108 (14), 142901 (2016). DOI: 10.1063/1.4945593.
  • Q.-C. Wu et al., Nonlinear dielectric effect of Fe2O3-doped PMS-PZT piezoelectric ceramics for high-power applications, Ceram. Int. 43 (14), 10866 (2017). DOI: 10.1016/j.ceramint.2017.05.119.
  • F. Li et al., Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method, J. Phys. D: Appl. Phys. 42 (9), 095417 (2009). DOI: 10.1088/0022-3727/42/9/095417.
  • S. Li, W. Cao, and L. E. Cross, The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic, J. Appl. Phys. 69 (10), 7219 (1991). DOI: 10.1063/1.347616.
  • D. A. Ochoa, and J. E. Garcia, Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime, Appl. Phys. A. 122 (4), 263 (2016). DOI: 10.1007/s00339-016-9808-1.
  • H. Zhang et al., Elastic, dielectric and piezoelectric properties of Fe2O3 doped PMnS-PZN-PZT ceramics, Ferroelectrics. 491 (1), 15 (2016). DOI: 10.1080/00150193.2015.1069922.
  • J. Mao et al., Effect of Fe2O3 doping on the properties of PMnS-PZN-PZT piezoelectric ceramics, J. Synth. Cryst. 39, 72 (2010). DOI: 10.16553/j.cnki.issn1000-985x.2010.01.046.
  • D. A. Hall, Rayleigh behaviour and the threshold field in ferroelectric ceramics, Ferroelectrics. 223 (1), 319 (1999). DOI: 10.1080/00150199908260586.
  • D. A. Hall, and P. J. Stevenson, High field dielectric behaviour of ferroelectric ceramics, Ferroelectrics. 228 (1), 139 (1999). DOI: 10.1080/00150199908226132.
  • J. E. Garcia, R. Perez, and A. Albareda, Contribution of reversible processes to the non-linear dielectric response in hard lead zirconate titanate ceramics, J. Phys: Condens. Matter. 17, 7143 (2005). DOI: 10.1088/0953-8984/17/44/007.
  • D. A. Ochoa, R. Pérez, and J. E. García, Preisach modelling of nonlinear response in electrically biased lead zirconate titanate-based piezoceramics, Appl. Phys. A. 112 (4), 1081 (2013). DOI: 10.1007/s00339-012-7492-3.
  • D. Damjanovic, Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics, J. Appl. Phys. 82 (4), 1788 (1997). DOI: 10.1063/1.365981.
  • M. Morozov, D. Damjanovic, and N. Setter, The nonlinearity and subswitching hysteresis in hard and soft PZT, J. Eur. Ceram. Soc. 25 (12), 2483 (2005). DOI: 10.1016/j.jeurceramsoc.2005.03.086.
  • R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A. 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching, Nature Mater. 3 (2), 91 (2004). DOI: 10.1038/nmat1051.
  • L. Zhang, and X. Ren, Aging behavior in single-domain Mn-doped BaTiO3 crystals: Implication for a unified microscopic explanation of ferroelectric aging, Phys. Rev. B. 73 (9), 094121 (2006). DOI: 10.1103/PhysRevB.73.094121.
  • A. Anil, K. Vani, and V. Kumar, Influence of defect structure on ferroelectric aging in donor–acceptor hybrid-doped PZT, Appl. Phys. A. 122 (6), 581 (2016). DOI: 10.1007/s00339-016-0089-5.
  • P. Erhart et al., Association of oxygen vacancies with impurity metal ions in lead titanate, Phys. Rev. B. 76 (17), 174116 (2007). DOI: 10.1103/PhysRevB.76.174116.
  • E. Erdem et al., Characterization of defect dipoles in (La, Fe)-codoped PZT52.5/47.5 piezoelectric ceramics by multifrequency electron paramagnetic resonance spectroscopy, IEEE Trans. Ultrason, Ferroelect, Freq. Contr. 55 (5), 1061 (2008). DOI: 10.1109/TUFFC.2008.757.
  • U. Robels, and G. Arlt, Domain wall clamping in ferroelectrics by orientation of defects, J. Appl. Phys. 73 (7), 3454 (1993). DOI: 10.1063/1.352948.
  • R. E. Eitel, T. R. Shrout, and C. A. Randall, Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics, J. Appl. Phys. 99 (12), 124110 (2006). DOI: 10.1063/1.2207738.
  • G. Arlt, H. Dederichs, and R. Herbiet, 90°-domain wall relaxation in tetragonally distorted ferroelectric ceramics, Ferroelectrics. 74 (1), 37 (1987). DOI: 10.1080/00150198708014493.
  • Q. M. Zhang et al., Domain wall excitations and their contributions to the weak‐signal response of doped lead zirconate titanate ceramics, J. Appl. Phys. 64 (11), 6445 (1988). DOI: 10.1063/1.342059.
  • A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983).
  • S. Bandyopadhyay et al., Leakage-current characteristics of vanadium- and scandium-doped barium strontium titanate ceramics over a wide range of DC electric fields, Acta Mater. 57 (17), 4935 (2009)., DOI: 10.1016/j.actamat.2009.06.063.
  • G. Du et al., Internal bias field relaxation in poled Mn-doped Pb(Mn1/3Sb2/3)O3-Pb(Zr,Ti)O3 ceramics, Ceram. Int. 39 (7), 7703 (2013). DOI: 10.1016/j.ceramint.2013.03.023.
  • Z. Zhu et al., Dielectric and electrical conductivity properties of PMS-PZT ceramics, J. Am. Ceram. Soc. 89 (2), 717 (2006). DOI: 10.1111/j.1551-2916.2005.00750.x.
  • L. Zhang et al., Defect structure-electrical property relationship in Mn-doped calcium strontium titanate dielectric ceramics, J. Am. Ceram. Soc. 100 (10), 4638 (2017). DOI: 10.1111/jace.14994.
  • D. Damjanovic, and M. Demartin, The Rayleigh law in piezoelectric ceramics, J. Phys. D: Appl. Phys. 29 (7), 2057 (1996). DOI: 10.1088/0022-3727/29/7/046.
  • D. Damjanovic, and M. Demartin, Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics, J. Phys: Condens. Matter. 9, 4943 (1997). DOI: 10.1088/0953-8984/9/23/018.
  • A. Pramanick et al., Subcoercive cyclic electrical loading of lead zirconate titanate ceramics I: Nonlinearities and losses in the converse piezoelectric effect, J. Am. Ceram. Soc. 92 (10), 2291 (2009). DOI: 10.1111/j.1551-2916.2009.03218.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.