392
Views
7
CrossRef citations to date
0
Altmetric
Articles

Experiments of drilling micro-holes on superalloy with thermal barrier coatings by using femtosecond laser

, , , &
Pages 37-51 | Received 19 Aug 2019, Accepted 30 Jan 2020, Published online: 23 Aug 2020

References

  • J. Li et al., Artificial compound eyes prepared by a combination of air-assisted deformation, modified laser swelling, and controlled crystal growth, ACS Nano. 13 (1), 114 (2019). doi:10.1021/acsnano.8b04047.
  • B. Liu et al., Study on hierarchical structured PDMS for surface super-hydrophobicity using imprinting with ultrafast laser structured models, Appl. Surf. Sci. 364, 528 (2016). doi:10.1016/j.apsusc.2015.12.190.
  • J. Cui et al., Nanofabrication with the thermal AFM metallic tip irradiated by continuous laser, Integr. Ferroelectr. 179 (1), 140 (2017). doi:10.1080/10584587.2017.1331333.
  • A. Pan et al., Fractal titanium oxide under inverse 10-ns laser deposition in air and water, Appl. Phys. A 123 (4), 253 (2017). doi:10.1007/s00339-017-0892-7.
  • J. Cui, L. Yang, and Y. Wang, Molecular dynamics simulation study of the melting of silver nanoparticles, Integr. Ferroelectr. 145 (1), 1 (2013). doi:10.1080/10584587.2013.787873.
  • J. Cui, L. Yang, and Y. Wang, Size effect of melting of silver nanoparticles, Rare Metal Mater. Eng. 43, 369 (2014).
  • B. Liu et al., Porous microstructures induced by picosecond laser scanning irradiation on stainless steel surface, Opt. Laser. Eng. 78, 55 (2016). doi:10.1016/j.optlaseng.2015.10.003.
  • G. Van Steenberge et al., Laser ablation of parallel optical interconnect waveguides, IEEE Photon. Technol. Lett. 18 (9), 1106 (2006). doi:10.1109/LPT.2006.873357.
  • J. Cui et al., Femtosecond laser irradiation of carbon nanotubes to metal electrodes, Appl. Sci. 9 (3), 476 (2019). doi:10.3390/app9030476.
  • L. Yang et al., Research progress on the interconnection of carbon nanotubes, New Carbon Mater. 100, 710 (2016). doi:10.1016/j.carbon.2016.01.049.
  • J. Cui et al., Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect, ACS Appl. Mater. Interfaces 7 (4), 2294 (2015). doi:10.1021/am506344j.
  • L. Yang et al., Nanospot soldering of carbon nanotubes using near-field enhancement effect of AFM probe irradiated by optical fiber probe laser, RSC Adv. 5 (70), 56677 (2015). doi:10.1039/C4RA10117K.
  • D. J. Joe et al., Laser-material interactions for flexible applications, Adv. Mater. 29 (26), 1606586 (2017). doi:10.1002/adma.201606586.
  • K. Keramatnejad et al., Laser‐assisted nanowelding of graphene to metals: an optical approach toward ultralow contact resistance, Adv. Mater. Interfaces 4 (15), 1700294 (2017). doi:10.1002/admi.201700294.
  • J. Cui et al., Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations, J. Nanopart. Res. 19, 110 (2017).
  • J. Cui, J. Zhang et al., Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes, J. Nanopart. Res. 19, 90 (2017).
  • P. Ghosh et al., Photothermal‐induced nanowelding of metal-semiconductor heterojunction in integrated nanowire units, Adv. Electron. Mater. 4 (5), 1700614 (2018). doi:10.1002/aelm.201700614.
  • J. Cui et al., Atomic-scale simulation of the contact behavior and mechanism of the SWNT-AgNW heterostructure, J. Phys. Chem. C 123 (32), 19693 (2019). ( doi:10.1021/acs.jpcc.9b05181).
  • J. Cui et al., Molecular dynamics study of nanojoining between axially positioned Ag nanowires, Appl. Surf. Sci. 378, 57 (2016). doi:10.1016/j.apsusc.2016.03.148.
  • J. Cui et al., Nanojoining of crossed Ag nanowires: a molecular dynamics study, J. Nanopart. Res. 18, 175 (2016).
  • V. Y. Iakovlev et al., Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment, Diam. Relat. Mater. 88, 144 (2018). doi:10.1016/j.diamond.2018.07.006.
  • J. Cui et al., Nanoscale soldering of axially positioned single-walled carbon nanotubes: a molecular dynamics simulation study, ACS Appl. Mater Interfaces 6 (3), 2044 (2014). doi:10.1021/am405114n.
  • J. Cui, L. Yang, and Y. Wang, Nanowelding configuration between carbon nanotubes in axial direction, Appl. Surf. Sci. 264, 713 (2013). doi:10.1016/j.apsusc.2012.10.102.
  • J. Cui, L. Yang, and Y. Wang, Molecular dynamics study of the positioned single-walled carbon nanotubes with T-, X-, Y- junction during nanoscale soldering, Appl. Surf. Sci. 284, 392 (2013). doi:10.1016/j.apsusc.2013.07.110.
  • K. Bambardekar et al., Direct laser manipulation reveals the mechanics of cell contacts in vivo, Proc. Natl. Acad. Sci. USA. 112 (5), 1416 (2015). doi:10.1073/pnas.1418732112.
  • S. D. Honguntikar et al., Epigenetic changes in preimplantation embryos subjected to laser manipulation, Lasers Med. Sci. 32 (9), 2081 (2017). doi:10.1007/s10103-017-2334-3.
  • J. Zhang et al., Large-scale assembly of single-walled carbon nanotubes based on aqueous solution, Integr. Ferroelectr. 190, 1 (2018).
  • J. Cui et al., Nanomanipulation of carbon nanotubes with the vector scanning mode of atomic force microscope, Integr. Ferroelectr. 163 (1), 81 (2015). doi:10.1080/10584587.2015.1041359.
  • B. Liu et al., Particles nanomanipulation by the enhanced evanescent field through a near-field scanning optical microscopy probe, Sensor. Actuat. A-Phys. 169 (1), 171 (2011). doi:10.1016/j.sna.2011.04.042.
  • O. V. Angelsky et al., Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation, Opt. Express. 25 (5), 5232 (2017). doi:10.1364/OE.25.005232.
  • J. Zhang et al., A molecular dynamics study on self-assembly of single-walled carbon nanotubes: from molecular morphology and binding energy, Adv. Mater. Interfaces 6 (19), 1900983 (2019). doi:10.1002/admi.201900983.
  • J. Zhang et al., Recent process in the preparation of horizontally ordered carbon nanotube assemblies from solution, Phys. Status Solidi A 215 (6), 1700719 (2018)., doi:10.1002/pssa.201700719.
  • J. Cui, L. Yang, and Y. Wang, Creation and measurement of nanodots with combined dynamic mode “dip-pen” nanolithography based on atomic force microscope, Micro Nano Lett. 9 (3), 189 (2014). doi:10.1049/mnl.2014.0030.
  • L. Yang et al., Directly writing nanodots on silicon surface by combined-dynamic dip-pen nanolithography, KEM. 609-610, 191 (2014). doi:10.4028/www.scientific.net/KEM.609-610.191.
  • Cui, L. Yang et al., Experimental study on the creation of nanodots with combined-dynamic mode, Integr. Ferroelectr. 151 (1), 7 (2014). doi:10.1080/10584587.2014.898554.
  • K. T. Voisey, and T. W. Clyne, Laser drilling of cooling holes through plasma sprayed thermal barrier coatings, Surf. Coat. Tech. 176 (3), 296 (2004). doi:10.1016/S0257-8972(03)00748-5.
  • Q. Feng et al., Femtosecond laser micromachining of a single-crystal superalloy, Scripta Mater. 53 (5), 511 (2005). doi:10.1016/j.scriptamat.2005.05.006.
  • Q. Feng et al., Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings, Mat. Sci. Eng. A. 430 (1-2), 203 (2006). doi:10.1016/j.msea.2006.05.104.
  • K. Jangra, S. Grover, and A. Aggarwal, Optimization of multi machining characteristics in WEDM of WC-5.3% Co composite using integrated approach of Taguchi, GRA and entropy method, Front. Mech. Eng. 7 (3), 288 (2012). doi:10.1007/s11465-012-0333-4.
  • J. Kozak, K. P. Rajurkar, and N. Chandarana, Machining of low electrical conductive materials by wire electrical discharge machining (WEDM), J. Mater. Process. Tech. 149 (1-3), 266 (2004). doi:10.1016/j.jmatprotec.2003.11.055.
  • S. F. Huang et al., Electrochemical discharge machining micro-hole in stainless steel with tool electrode high-speed rotating, Mater. Manuf. Process 29 (5), 634 (2014). doi:10.1080/10426914.2014.901523.
  • J. Zhao et al., Machining millimeter-scale deep holes in SiCf/SiC material using femtosecond laser filamentation effect, Mater. Sci. Adv. Compos. Mater. 2, 1 (2018).
  • R. Wang et al., An experimental investigation into the defects of laser-drilled holes in thermal barrier coated Inconel 718 superalloys, Int. J. Adv. Manuf. Technol. 96 (1-4), 1467 (2018). doi:10.1007/s00170-018-1592-y.
  • Z. Fan et al., Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts, Mater. Lett. 188, 145 (2017). doi:10.1016/j.matlet.2016.11.037.
  • J. Cui et al., New optical near-field nanolithography with optical fiber probe laser irradiating atomic force microscopy probe tip, Integr. Ferroelectr. 169 (1), 124 (2016). doi:10.1080/10584587.2016.1165555.
  • Z. Fan et al., The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coating in presence of a molten salt (Na2SO4+V2O5, ), Corros. Sci. 115, 56 (2017). doi:10.1016/j.corsci.2016.11.011.
  • J. Dou et al., Process research on micro-machining diamond microgroove by femtosecond laser, Integr. Ferroelectr 198 (1), 9 (2019). doi:10.1080/10584587.2019.1592571.
  • J. Cui et al., Near-field optical characteristics of Ag nanoparticle within the near-field scope of a metallic AFM tip irradiated by SNOM laser, Integr. Ferroelectr. 178 (1), 117 (2017). doi:10.1080/10584587.2017.1325212.
  • Y. Sun et al., Research on the mechanism of micromachining of CVD diamond by femtosecond laser, Ferroelectr. 549 (1), 266–275 (2019). doi:10.1080/00150193.2019.1592569.
  • Z. Zhai et al., Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites, Opt. Commun. 424, 137 (2018). doi:10.1016/j.optcom.2018.04.055.
  • G. Xu et al., Simulation and experimental of femtosecond laser polishing quartz material, Integr. Ferroelectr. 181 (1), 60 (2017). doi:10.1080/10584587.2017.1352332.
  • J. Cui, L. Yang, and Y. Wang, Simulation study of near-field enhancement on a laser-irradiated AFM metal probe, Laser Phys. 23 (7), 076003 (2013). doi:10.1088/1054-660X/23/7/076003.
  • Z. Fan et al., Effect of drilling allowance on TBC delamination, spatter and re-melted cracks characteristics in laser drilling of TBC coated superalloys, Int. J. Mach. Tool. Manufac. 106, 1 (2016). doi:10.1016/j.ijmachtools.2016.03.008.
  • Z. Fan et al., Influence of columnar grain microstructure on thermal shock resistance of laser re-melted ZrO2-7 wt.% Y2O3 coatings and their failure mechanism, Surf. Coat. Tech. 277, 188 (2015). doi:10.1016/j.surfcoat.2015.07.036.
  • X. Wang et al., Simulation study of near-field enhancement on an Ag nanoparticle dimer system in a laser-induced nanowelding process, Integr. Ferroelectr. 191, 1 (2018).
  • B. Theogene et al., 3-D finite element calculation of electric field enhancement for nanostructures fabrication mechanism on silicon surface with AFM tip induced local anodic oxidation, Integr. Ferroelectr. 190, 1 (2018).
  • J. Cui et al., Local field enhancement characteristics in a tapered metal coated optical fiber probe for nanolithography, Integr. Ferroelectr. 164 (1), 90 (2015). doi:10.1080/10584587.2015.1044874.
  • S. Marimuthu et al., An experimental study on quasi-CW fibre laser drilling of nickel superalloy, Opt. Laser Technol. 94, 119 (2017). doi:10.1016/j.optlastec.2017.03.021.
  • J. Zhang et al., Effect of laser scanning speed on geometrical features of Nd: YAG laser machined holes in thin silicon nitride substrate, Ceram. Int. 43 (3), 2938 (2017). doi:10.1016/j.ceramint.2016.10.199.
  • S. Döring et al., Influence of pulse duration on the hole formation during short and ultrashort pulse laser deep drilling, Front. Ultrafast Optics 8247, 824717 (2012). doi:10.1117/12.913755.
  • C. S. Nielsen, and P. Balling, Deep drilling of metals with ultrashort laser pulses: a two-stage process, J. Appl. Phys. 99 (9), 093101 (2006). doi:10.1063/1.2193648.
  • L. Jiang, and H. L. Tsai, Modeling of ultrashort laser pulse-train processing of metal thin films, Int. J. Heat Mass Trans. 50 (17-18), 3461 (2007). doi:10.1016/j.ijheatmasstransfer.2007.01.049.
  • D. K. Das, and T. M. Pollock, Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy, J. Mater. Process. Tech. 209 (15-16), 5661 (2009). doi:10.1016/j.jmatprotec.2009.05.031.
  • E. J. Y. Ling et al., Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium, Appl. Surf. Sci. 353, 512 (2015). doi:10.1016/j.apsusc.2015.06.137.
  • J. Wei et al., Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting, Appl. Surf. Sci. 370, 364 (2016). doi:10.1016/j.apsusc.2016.02.162.
  • F. Bauer, Residual heat in ultra-short pulsed laser ablation of metals, JLMN. 10 (3), 325 (2015). doi:10.2961/jlmn.2015.03.0016.
  • A. Y. Vorobyev, and C. Guo, Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation, Appl. Phys. Lett. 86 (1), 011916 (2005). doi:10.1063/1.1844598.
  • K. D. Wang et al., Processing of Micro-hole by millisecond laser and Postprocessing of Recast layer, J. Xi’an Jiaotong Univ. 45, 45 (2011). (in Chinese)
  • R. Wang et al., Computational and experimental study on hole evolution and delamination in laser drilling of thermal barrier coated nickel superalloy, Opt. Laser Eng. 107, 161 (2018). doi:10.1016/j.optlaseng.2018.03.019.
  • W. Duan et al., Study on the process and theory of high-quality micro-hole by laser rotary cutting, J. Xi’an Jiaotong Univ. 49, 95 (2015). (in Chinese)
  • X. Sun et al., Experimental investigation on thermal effects in picosecond laser drilling of thermal barrier coated In718, Opt. Laser Technol. 113, 150 (2019). doi:10.1016/j.optlastec.2018.12.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.