106
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of SiC particle size on microstructure and properties of SiCp/6061Al matrix composites

, , , , &
Pages 81-93 | Received 11 Oct 2019, Accepted 30 Jan 2020, Published online: 28 Sep 2020

References

  • X. L. Zhou et al., Thermal expansion behavior and characteristic of SiCp/Al composites, AMR 287-290, 658 (2011). DOI: 10.4028/www.scientific.net/AMR.287-290.658.
  • E. Z. Kordatos et al., Monitoring the fracture behavior of SiCp/Al alloy composites using infrared lock-in thermography, Proceedings of SPIE – The International Society for Optical Engineering, San Diego, CA, 72940X (2009). DOI: 10.1117/12.815207.
  • Y. Sahin, Preparation and some properties of SiC particle reinforced aluminum alloy composites, Mater. Des. 24 (8), 671 (2003). DOI: 10.1016/S0261-3069(03)00156-0.
  • P. V. Trinh et al., Effect of oxidation of SiC particles on mechanical properties and wear behavior of SiCp/Al6061 composites, J. Alloys Compd. 769, 282 (2018). DOI: 10.1016/j.jallcom.2018.07.355.
  • S. Ren et al., Effect of controlled interfacial reaction on the microstructure and properties of the SiCp/Al composites prepared by pressureless infiltration, J. Alloys Compd. 455 (1-2), 424 (2008). DOI: 10.1016/j.jallcom.2007.01.127.
  • L. Wang et al., Preparation and mechanical properties of β -SiC nanoparticle reinforced aluminum matrix composite by a multi-step powder metallurgy process, J. Wuhan Univ. Technol. Mat. Sci. Edit. 28 (6), 1059 (2013). DOI: 10.1007/s11595-013-0819-x.
  • M. Rodríguez-Reyes et al., Limiting the development of Al4C3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration, Compos. Sci. Technol. 66 (7-8), 1056 (2006). DOI: 10.1016/j.compscitech.2005.07.025.
  • S. Hong et al., Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites, Mater. Sci. Eng. A 347 (1-2), 198 (2003). DOI: 10.1016/S0921-5093(02)00593-2.
  • V. C. Nardone and K. M. Prewo, On the strength of discontinuous silicon carbide reinforced aluminum composites, Scr. Metall. 20 (1), 43 (1986). DOI: 10.1016/0036-9748(86)90210-3.
  • D. Mandal and S. Viswanathan, Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite, Mater. Charact. 85, 73 (2013). DOI: 10.1016/j.matchar.2013.08.014.
  • C. Sun et al., Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites, J. Mater. Eng. Perform. 20 (9), 1606 (2011). DOI: 10.1007/s11665-010-9801-3.
  • N. Hansen and D. Kuhlmann-Wilsdorf, Low energy dislocation structures due to unidirectional deformation at low temperatures, Mater. Sci. Eng. 81 (81), 141 (1986). DOI: 10.1016/0025-5416(86)90258-2.
  • K. C. Mohanakumara et al., Development and mechanical properties of SiC reinforced cast and extruded Al-based metal matrix composite, Proc. Mater. Sci. 5, 934 (2014). DOI: 10.1016/j.mspro.2014.07.381.
  • A. Rabiei, L. Vendra, and T. Kishi, Fracture behavior of particle reinforced metal matrix composites, Compos. Part A Appl. Sci. Manuf. 39 (2), 294 (2008). DOI: 10.1016/j.compositesa.2007.10.018.
  • F. Tang et al., Consolidation effects on tensile properties of an elemental Al matrix composite, Mater. Sci. Eng. A 386 (1-2), 194 (2004). DOI: 10.1016/S0921-5093(04)00960-8.
  • A. Slipenyuk et al., Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio, Acta Mater. 54 (1), 157 (2006). DOI: 10.1016/j.actamat.2005.08.036.
  • Z. W. Wang et al., Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites, Mater. Sci. Eng. A 528 (3), 1131 (2011). DOI: 10.1016/j.msea.2010.11.028.
  • H. M. Liu et al., Experimental study of the wear resistance of TiC/7075 Al matrix composite, J. Mater. Eng. 39 (07), 66 (2011). (In Chinese)
  • D. Li et al., Size effect of SiC particle on microstructures and mechanical properties of SiCp/Al composites, Proceeding s of SPIE – The International Society for Optical Engineering, Gold Coast, Australia, 87931I (2013). DOI: 10.1117/12.2027957.
  • M. Song and D. Xiao, Modeling the fracture toughness and tensile ductility of SiCp/Al metal matrix composites, Mater. Sci. Eng. A 474 (1-2), 371 (2008). DOI: 10.1016/j.msea.2007.05.075.
  • S. Wang et al., Effects of particle size and its distribution homogenizationon the microstructure and mechanical properties ofSiC/Al-30Si alloy composite, Powder Metall. Technol. 244 (01), 9 (2013). (In Chinese) DOI: 10.1016/j.powtec.2013.03.054.
  • D. S. Li et al., Wear-resistant property of SiCp/Al composites, KEM 368-372, 1096 (2008). DOI: 10.4028/www.scientific.net/KEM.368-372.1096.
  • Y. Y. Tao et al., Influences of SiC particle size and content on the mechanical properties and wear resistance of the composites with Al matrix, KEM 375-376, 430 (2008). DOI: 10.4028/www.scientific.net/KEM.375-376.430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.