243
Views
9
CrossRef citations to date
0
Altmetric
Articles

Porous 3D hydroxyapatite/polyurethane composite scaffold for bone tissue engineering and its in vitro degradation behavior

, , , , &
Pages 104-115 | Received 07 Nov 2019, Accepted 30 Jan 2020, Published online: 28 Sep 2020

References

  • L. Lin et al., Development of ciprofloxacin and nano-hydroxyapatite dual-loaded polyurethane scaffolds for simultaneous treatment of bone defects and osteomyelitis, Mater. Lett. 253, 86 (2019). DOI: 10.1016/j.matlet.2019.06.028.
  • D. K. Chattopadhyay, and K. Raju, Structural engineering of polyureathane coatings for high performance applications, Prog. Polym. Sci. 32 (3), 352 (2007). DOI: 10.1016/j.progpolymsci.2006.05.003.
  • X. Tang et al., Influence of hydrodynamic pressure on the proliferation and osteogenic differentiation of bonemesenchymal stromal cells seeded on polyurethane scaffolds, J. Biomed. Mater. Res. 105 (12), 3445 (2017). DOI: 10.1002/jbm.a.36197.
  • G. Stéphanie et al., Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds, J. Biomed. Mater. Res. A 87, 293 (2009). DOI: 10.1002/jbm.a.31972.
  • M. Pavlova and M. Draganova, Biocompatible and biodegradable polyurethane polymers, Biomaterials 14 (13), 1024 (1993). DOI: 10.1016/0142-9612(93)90196-9.
  • K. Kornicka et al., Polyurethane-polylactide-based material doped with resveratrol decreases senescence and oxidative stress of adipose-derived mesenchymal stromal stem cell (ASCs), RSC Adv. 7 (39), 24070 (2017). DOI: 10.1039/C7RA02334K.
  • G. A. Skarja, and K. A. Woodhouse , Synthesis and characterization of degradable polyurethane elastomers containing and amino acid-based chain extender, J. Biomater. Sci. Polym. Ed. 9 (3), 271 (1998). 10.1163/156856298X00659 DOI: 10.1163/156856298x00659.
  • F. M. Benoit , Degradation of polyurethane foams used in the Même breast implant, J. Biomed. Mater. Res. 27 (10), 1341 (1993). DOI: 10.1002/jbm.820271014.
  • T. M. Sinclair, C. L. Kerrigan, and R. Buntic, Biodegradation of the polyurethane foam covering of breast implants, Plast. Reconstr. Surg. 92 (6), 1003 (1993). 10.1097/00006534-199311000-00001
  • S. H. Maxian, J. P. Zawadsky, and M. G. Dunn , In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants, J. Biomed. Mater. Res. 27 (1), 111 (1993). DOI: 10.1002/jbm.820270604.
  • M. Lizette et al., Static mechanical properties of hydroxyapatite (HA) powder-filled acrylic bone cements: Effect of type of HA powder, J. Biomed. Mater. Res. B 72, 345 (2005). DOI: 10.1002/jbm.b.30166.
  • A. M. P. Dupraz et al., Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites, J. Biomed. Mater. Res. 30 (2), 231 (1996). DOI: 10.1002/(SICI)1097-4636(199602)30:2<231::AID-JBM13>3.0.CO;2-P.
  • L. Haohuai et al., Preparation and characterization of aliphatic polyurethane and hydroxyapatite composite scaffold, J. Appl. Polym. Sci. 112 (5), 2968 (2009). DOI: 10.1002/app.29862.
  • G. Jianjun et al., Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications, Biomaterials 26, 3961 (2005). : DOI: 10.1016/j.biomaterials.2004.10.018.
  • V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis , Biomaterials 26 (27), 5474 (2005). DOI: 10.1016/j.biomaterials.2005.02.002.
  • G. Katarzyna and G. Sylwester, Biodegradable porous polyurethane scaffolds for tissue repair and regeneration, J. Biomed. Mater. Res. A 79, 128 (2006). DOI: 10.1002/jbm.a.30708.
  • J. R. Jones, New trends in bioactive scaffolds: the importance of nanostructure, J. Eur. Ceram. Soc. 29 (7), 1275 (2009). DOI: 10.1016/j.jeurceramsoc.2008.08.003.
  • S. Mohsen, M. M. S. Gity, and S. Ali, Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (epsilon-caprolactone diol)-based polyurethanes, J. Biomater. Sci. Polym. Ed. 27 (17), 1712 (2016). DOI: 10.1080/09205063.2016.1231436.
  • Z. Jianyang et al., A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro, Biomaterials 21, 1247 (2000). DOI: 10.1016/S0142-9612(00)00005-3.
  • S. A. Baser, and D. V. Khakhar, Polytetramethylene ether glycol -glycerol blends as polyols for rigid polyurethane foams, Cell Polym. 12, 390 (1993). DOI: 10.1016/0142-9612(93)90231-P.
  • X. Wang et al., Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites, Biomaterials 23 (24), 4787 (2002). DOI: 10.1016/S0142-9612(02)00229-6.
  • Y.-Y. Hsu et al., Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices, J. Biomed. Mater. Res. 35 (1), 107 (1997). DOI: 10.1002/(SICI)1097-4636(199704)35:1<107::AID-JBM11>3.0.CO;2-G.
  • D. C. Greenspan, J. P. Zhong, and L. A. Torref, In vitro studies of novel CaO-SiO2-MgO system composite bioceramics, Bioceramics 19 (1), 359 (2008). DOI: 10.1007/s10856-007-3186-3.
  • Y. Zou, and Y. Li, Synthesis and properties of a copolymer of poly(1,4-phenylene sulfide) –poly(2,4-phenylene sulfide acid) and its HA reinforced composite, Eur. Polym. J. 2, 411 (2003). DOI: 10.1016/S0014-3057(02)00109-X.
  • Z. Dong, Y. Li, and Q. Zou, Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering, Appl. Surf. Sci. 255 (12), 6087 (2009). 10.1016/j.apsusc.2009.01.083 DOI: 10.1016/j.apsusc.2009.01.083.
  • S. Jaya, D. D. Timothy, and W. Rizhi, Porous scaffold of gelatin–starch with nanohydroxyapatite omposite processed via novel microwave vacuum drying, Acta Biomater. 4, 932942 (2008). DOI: 10.1016/j.actbio.2008.01.019.
  • A. Mortley, H. W. Bonin, and V. T. Bui, Synthesis and properties of radiation modified thermally cured castor oil based polyurethanes, Nucl. Instrum. Methods B 265 (1), 98 (2007). DOI: 10.1016/j.nimb.2007.08.032.
  • S. Mark et al., The relationship between polyurethane foam microstructure and foam aging, Polymer 9, 934942 (2008). DOI: 10.1016/j.polymer.2008.01.008.
  • O. Lidia et al., Molecular dynamics in polyester- or polyether-urethane networks based on different diisocyanates, Polymer 49, 2662 (2008). DOI: 10.1016/j.polymer.2008.04.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.