1,707
Views
17
CrossRef citations to date
0
Altmetric
Articles

Avalanches in ferroelectric, ferroelastic and coelastic materials: phase transition, domain switching and propagation

&
Pages 82-107 | Received 14 Feb 2020, Accepted 12 May 2020, Published online: 22 Dec 2020

References

  • W. N. Lawless, and J. Fousek, Small-signal permittivity of the stationary (100)-180° domain wall in BaTiO3, J. Phys. Soc. Jpn. 28 (2), 419 (1970). DOI: 10.1143/JPSJ.28.419.
  • V. Janovec, L. Richterová, and J. Pívratská, Polar properties of compatible ferroelastic domain walls, Ferroelectrics 222 (1), 73 (1999). DOI: 10.1080/00150199908014800.
  • A. Aird, and E. K. H. Salje, Sheet superconductivity in twin walls: experimental evidence of WO3-x, J. Phys. Condens. Matter 10 (22), L377 (1998). DOI: 10.1088/0953-8984/10/22/003.
  • G. F. Nataf, and M. Guennou, Optical studies of ferroelectric and ferroelastic domain walls, J. Phys. Condens. Matter 32 (18), 183001 (2020). DOI: 10.1088/1361-648X/ab68f3.
  • J. Seidel et al., Conduction at domain walls in oxide multiferroics, Nat. Mater. 8 (3), 229 (2009). DOI: 10.1038/nmat2373.
  • J. Seidel et al., Domain wall conductivity in La-doped BiFeO3, Phys. Rev. Lett. 105 (19), 197603 (2010). DOI: 10.1103/PhysRevLett.105.197603.
  • J. Guyonnet et al., Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films, Adv. Mater. Weinheim. 23 (45), 5377 (2011). DOI: 10.1002/adma.201102254.
  • S. Farokhipoor, and B. Noheda, Conduction through 71° domain walls in BiFeO3 thin films, Phys. Rev. Lett. 107 (12), 127601 (2011). DOI: 10.1103/PhysRevLett.107.127601.
  • D. Meier et al., Anisotropic conductance at improper ferroelectric domain walls, Nat. Mater. 11 (4), 284 (2012). DOI: 10.1038/nmat3249.
  • T. Rojac et al., Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects, Nat. Mater. 16 (3), 322 (2017). DOI: 10.1038/nmat4799.
  • J. Ma et al., Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls, Nat. Nanotechnol. 13 (10), 947 (2018). DOI: 10.1038/s41565-018-0204-1.
  • T. Sluka et al., Free-electron gas at charged domain walls in insulating BaTiO3, Nat. Commun. 4, 1808 (2013). DOI: 10.1038/ncomms2839.
  • L. Goncalves-Ferreira et al., Ferrielectric twin walls in CaTiO3, Phys. Rev. Lett. 101 (9), 097602 (2008). DOI: 10.1103/PhysRevLett.101.097602.
  • J. F. Scott, E. K. H. Salje, and M. A. Carpenter, Domain wall damping and elastic softening in SrTiO3: evidence for polar twin walls, Phys. Rev. Lett. 109 (18), 187601 (2012). DOI: 10.1103/PhysRevLett.109.187601.
  • E. K. H. Salje et al., Domains within domains and walls within walls: evidence for polar domains in cryogenic SrTiO3, Phys. Rev. Lett. 111 (24), 247603 (2013). DOI: 10.1103/PhysRevLett.111.247603.
  • X.-K. Wei et al., Ferroelectric translational antiphase boundaries in nonpolar materials, Nat. Commun. 5, 3031 (2014). DOI: 10.1038/ncomms4031.
  • H. Yokota et al., Direct evidence of polar nature of ferroelastic twin boundaries in CaTiO3 obtained by second harmonic generation microscope, Phys. Rev. B 89 (14), 144109 (2014). DOI: 10.1103/PhysRevB.89.144109.
  • H. Yokota et al., Polar nature of stress-induced twin walls in ferroelastic CaTiO3, AIP Adv. 7 (8), 085315 (2017). DOI: 10.1063/1.4990608.
  • H. Yokota et al., Symmetry and three-dimensional anisotropy of polar domain boundaries observed in ferroelastic LaAlO3 in the complete absence of ferroelectric instability, Phys. Rev. B 98 (10), 104105 (2018). DOI: 10.1103/PhysRevB.98.104105.
  • H. Yokota et al., Polar nature of domain boundaries in purely ferroelastic Pb3(PO4)2 investigated by second harmonic generation microscopy, Phys. Rev. B 100 (2), 024101 (2019). DOI: 10.1103/PhysRevB.100.024101.
  • G. F. Nataf et al., Control of surface potential at polar domain walls in a nonpolar oxide, Phys. Rev. Mater. 1 (7), 074410 (2017). DOI: 10.1103/PhysRevMaterials.1.074410.
  • S. Van Aert et al., Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy, Adv. Mater. 24 (4), 523 (2012). DOI: 10.1002/adma.201103717.
  • E. K. H. Salje, Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering, Chemphyschem 11 (5), 940 (2010). DOI: 10.1002/cphc.200900943.
  • G. Catalan et al., Domain wall nanoelectronics, Rev. Mod. Phys. 84 (1), 119 (2012). DOI: 10.1103/RevModPhys.84.119.
  • J. Seidel, Domain walls as nanoscale functional elements, J. Phys. Chem. Lett. 3 (19), 2905 (2012). DOI: 10.1021/jz3011223.
  • D. Meier, Functional domain walls in multiferroics, J Phys Condens Matter 27 (46), 463003 (2015). DOI: 10.1088/0953-8984/27/46/463003.
  • Y. Ishibashi, and Y. Takagi, Note on ferroelectric domain switching, J. Phys. Soc. Jpn. 31 (2), 506 (1971). DOI: 10.1143/JPSJ.31.506.
  • R. C. Miller, Some experiments on the motion of 180° domain walls in BaTiO3, Phys. Rev. 111 (3), 736 (1958). DOI: 10.1103/PhysRev.111.736.
  • J. P. Sethna, K. A. Dahmen, and C. R. Myers, Crackling noise, Nature 410 (6825), 242 (2001). DOI: 10.1038/35065675.
  • E. K. H. Salje, and K. A. Dahmen, Crackling noise in disordered materials, Annu. Rev. Condens. Matter Phys. 5 (1), 233 (2014). DOI: 10.1146/annurev-conmatphys-031113-133838.
  • J. Baró, and E. Vives, Analysis of power-law exponents by maximum-likelihood maps, Phys. Rev. E 85 (6), 066121 (2012). DOI: 10.1103/PhysRevE.85.066121.
  • E. K. H. Salje, A. Planes, and E. Vives, Analysis of crackling noise using the maximum-likelihood method: power-law mixing and exponential damping, Phys. Rev. E 96 (4), 042122 (2017). DOI: 10.1103/PhysRevE.96.042122.
  • V. Navas-Portella et al., Universality of power-law exponents by means of maximum-likelihood estimation, Phys Rev E 100 (6), 062106 (2019). DOI: 10.1103/PhysRevE.100.062106.
  • B. Tadić, Switching current noise and relaxation of ferroelectric domains, Eur. Phys. J. B 28 (1), 81 (2002). DOI: 10.1140/epjb/e2002-00203-1.
  • S. Liu, I. Grinberg, and A. M. Rappe, Intrinsic ferroelectric switching from first principles, Nature 534 (7607), 360 (2016). DOI: 10.1038/nature18286.
  • V. Y. Shur et al., Barkhausen jumps during domain wall motion in ferroelectrics, Ferroelectrics 267 (1), 347 (2002). DOI: 10.1080/00150190211031.
  • X. Ding et al., Twinning in strained ferroelastics: microstructure and statistics, JOM 65 (3), 401 (2013). DOI: 10.1007/s11837-012-0529-4.
  • E. K. H. Salje et al., How to generate high twin densities in nano-ferroics: thermal quench and low temperature shear, Appl. Phys. Lett. 100 (22), 222905 (2012). DOI: 10.1063/1.4724192.
  • R. Abe, On ferroelectric Barkhausen pulses of Rochelle salt, J. Phys. Soc. Jpn. 11 (2), 104 (1956). DOI: 10.1143/JPSJ.11.104.
  • A. G. Chynoweth, Barkhausen pulses in barium titanate, Phys. Rev. 110 (6), 1316 (1958). DOI: 10.1103/PhysRev.110.1316.
  • A. G. Chynoweth, Effect of space charge fields on polarization reversal and the generation of Barkhausen pulses in barium titanate, J. Appl. Phys. 30 (3), 280 (1959). DOI: 10.1063/1.1735152.
  • R. C. Miller, On the origin of Barkhausen pulses in BaTiO3, J. Phys. Chem. Solids 17 (1-2), 93 (1960). DOI: 10.1016/0022-3697(60)90180-3.
  • B. Březina, J. Fousek, and A. Glanc, Barkhausen pulses in BaTiO3 connected with 90° switching processes, Czech. J. Phys. 11 (8), 595 (1961). DOI: 10.1007/BF01689156.
  • V. M. Rudyak, The Barkhausen effect, Sov. Phys. Usp. 13 (4), 461 (1971). DOI: 10.1070/PU1971v013n04ABEH004681.
  • E. K. H. Salje et al., Ferroelectric switching and scale invariant avalanches in BaTiO3, Phys. Rev. Mater 3 (1), 014415 (2019). DOI: 10.1103/PhysRevMaterials.3.014415.
  • E. V. Colla, L. K. Chao, and M. B. Weissman, Barkhausen noise in a relaxor ferroelectric, Phys. Rev. Lett. 88 (1), 017601 (2002). DOI: 10.1103/PhysRevLett.88.017601.
  • X. Zhang et al., Barkhausen noise probe of the ferroelectric transition in the relaxor PbMg1/3Nb2/3O3-12% PbTiO3, Phys. Rev. B 95 (14), 144203 (2017). DOI: 10.1103/PhysRevB.95.144203.
  • V. Westphal, W. Kleemann, and M. D. Glinchuk, Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric PbMg1/3Nb2/3O3, Phys. Rev. Lett. 68 (6), 847 (1992). DOI: 10.1103/PhysRevLett.68.847.
  • E. V. Colla et al., Long-time relaxation of the dielectric response in lead magnoniobate, Phys. Rev. Lett. 74 (9), 1681 (1995). DOI: 10.1103/PhysRevLett.74.1681.
  • B. Casals et al., Avalanches from charged domain wall motion in BaTiO3 during ferroelectric switching, APL Mater 8 (1), 011105 (2020). DOI: 10.1063/1.5128892.
  • C. D. Tan et al., Electrical studies of Barkhausen switching noise in ferroelectric PZT: critical exponents and temperature dependence, Phys. Rev. Mater 3 (3), 034402 (2019). DOI: 10.1103/PhysRevMaterials.3.034402.
  • Y. Xu et al., Avalanche dynamics of ferroelectric phase transitions in BaTiO3 and 0.7Pb(Mg2∕3Nb1∕3)O3-0.3PbTiO3 single crystals, Appl. Phys. Lett. 115 (2), 022901 (2019). DOI: 10.1063/1.5099212.
  • J. T. Uhl et al., Universal quake statistics: from compressed nanocrystals to earthquakes, Sci. Rep. 5 (1), 16493 (2015). DOI: 10.1038/srep16493.
  • F. J. Pérez-Reche et al., Athermal character of structural phase transitions, Phys. Rev. Lett. 87 (19), 195701 (2001). DOI: 10.1103/PhysRevLett.87.195701.
  • F.-J. Pérez-Reche et al., Driving rate effects in avalanche-mediated first-order phase transitions, Phys. Rev. Lett. 93 (19), 195701 (2004). DOI: 10.1103/PhysRevLett.93.195701.
  • E. K. H. Salje, E. Dul'kin, and M. Roth, Acoustic emission during the ferroelectric transition Pm3¯m to P4mm in BaTiO3 and the ferroelastic transition R3¯m-C2/c in Pb3(PO4)2, Appl. Phys. Lett. 106 (15), 152903 (2015). DOI: 10.1063/1.4918746.
  • W. Cochran, Crystal stability and the theory of ferroelectricity, Adv. Phys. 9 (36), 387 (1960). DOI: 10.1080/00018736000101229.
  • S. A. Hayward, and E. K. H. Salje, The pressure temperature phase diagram of BaTiO3: a macroscopic description of the low-temperature behaviour, J. Phys. Condens. Matter 14 (36), L599 (2002). DOI: 10.1088/0953-8984/14/36/101.
  • R. Comes, M. Lambert, and A. Guinier, The chain structure of BaTiO3 and KNbO3, Solid State Commun. 6 (10), 715 (1968). DOI: 10.1016/0038-1098(68)90571-1.
  • J. A. Hooton, and W. J. Merz, Etch patterns and ferroelectric domains in BaTiO3 single crystals, Phys. Rev. 98 (2), 409 (1955). DOI: 10.1103/PhysRev.98.409.
  • D. S. Campbell, Observations on etched crystals of barium titanate, London, Edinburgh, Dublin Philos. Mag. J. Sci. 46 (382), 1261 (1955). DOI: 10.1080/14786441108520636.
  • J. Novak, and E. K. H. Salje, Surface structure of domain walls, J. Phys. Condens. Matter 10 (21), L359 (1998). DOI: 10.1088/0953-8984/10/21/005.
  • N. Barrett et al., Evidence for a surface anomaly during the cubic-tetragonal phase transition in BaTiO3(001), Appl. Phys. Lett. 113 (2), 022901 (2018). DOI: 10.1063/1.5030498.
  • B. Houchmandzadeh, J. Lajzerowicz, and E. Salje, Relaxations near surfaces and interfaces for first-, second- and third-neighbour interactions: theory and applications to polytypism, J. Phys. Condens. Matter 4 (49), 9779 (1992). DOI: 10.1088/0953-8984/4/49/006.
  • S. V. Kalinin, and D. A. Bonnell, Local potential and polarization screening on ferroelectric surfaces, Phys. Rev. B 63 (12), 125411 (2001). DOI: 10.1103/PhysRevB.63.125411.
  • A. Höfer et al., Persistence of surface domain structures for a bulk ferroelectric above Tc, Phys. Rev. Lett. 108 (8), 087602 (2012). DOI: 10.1103/PhysRevLett.108.087602.
  • C. Mathieu et al., Surface proximity effect, imprint memory of ferroelectric twins, and tweed in the paraelectric phase of BaTiO3, Sci. Rep. 8 (1), 13660 (2018). DOI: 10.1038/s41598-018-31930-4.
  • E. K. H. Salje et al., Elastic excitations in BaTiO3 single crystals and ceramics: mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy, Phys. Rev. B 87 (1), 014106 (2013). DOI: 10.1103/PhysRevB.87.014106.
  • O. Aktas, M. A. Carpenter, and E. K. H. Salje, Polar precursor ordering in BaTiO3 detected by resonant piezoelectric spectroscopy, Appl. Phys. Lett. 103 (14), 142902 (2013). DOI: 10.1063/1.4823576.
  • M. Roth et al., Phase transition at a nanometer scale detected by acoustic emission within the cubic phase Pb(Zn1/3Nb2/3)O3-xPbTiO3 relaxor ferroelectrics, Phys. Rev. Lett. 98 (26), 265701 (2007). DOI: 10.1103/PhysRevLett.98.265701.
  • E. Dul’kin et al., Acoustic emission study of phase transitions and polar nanoregions in relaxor-based systems: application to the PbZn1/3Nb2/3O3 family of single crystals, Phys. Rev. B 73 (1), 012102 (2006). DOI: 10.1103/PhysRevB.73.012102.
  • E. Dul’kin, I. P. Raevskii, and S. M. Emel’yanov, Acoustic emission and thermal expansion of Pb(Mg1/3Nb2/3)O3 and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals, Phys. Solid State 45 (1), 158 (2003). DOI: 10.1134/1.1537428.
  • E. Dul’kin et al., Nature of thermally stimulated acoustic emission from PbMg1/3Nb2/3O3–PbTiO3 solid solutions, Appl. Phys. Lett. 94 (25), 252904 (2009). DOI: 10.1063/1.3160552.
  • E. Dul’kin et al., Burns, Néel, and structural phase transitions in multiferoic Pb(Fe2∕3W1∕3)O3–xPbTiO3 detected by an acoustic emission, J. Appl. Phys. 103 (8), 083542 (2008). DOI: 10.1063/1.2907969.
  • E. Dul’kin et al., Phase transformation above Tm in PbSc0.5Ta0.5O3 relaxor as seen via acoustic emission E, Phys. Rev. B 82, 180101 (2010).
  • E. Dul’kin et al., Ferroelectric precursor behavior of highly cation-ordered PbSc0.5Ta0.5O3 detected by acoustic emission: tweed and polar nanoregions, Appl. Phys. Lett. 105 (21), 212901 (2014). DOI: 10.1063/1.4902511.
  • E. Dul’kin et al., Relaxor-like behavior of BaTiO3 crystals from acoustic emission study, Appl. Phys. Lett. 97 (3), 032903 (2010). DOI: 10.1063/1.3464968.
  • L. A. Shuvalov, V. M. Rudyak, and V. E. Kamaev, Overpolarization jumps in ferroelectric crystals, produced by mechanical stress, Dokl. Akad. Nauk SSSR 163 (2), 347 (1965).
  • R. J. Harrison, and E. K. H. Salje, The noise of the needle: avalanches of a single progressing needle domain in LaAlO3, Appl. Phys. Lett. 97 (2), 021907 (2010). DOI: 10.1063/1.3460170.
  • R. J. Harrison, and E. K. H. Salje, Ferroic switching, avalanches, and the Larkin length: needle domains in LaAlO3, Appl. Phys. Lett. 99 (15), 151915 (2011). DOI: 10.1063/1.3650475.
  • R. J. Harrison, and E. K. H. Salje, Avalanches and the Propagation and Retraction of Ferroelastic Needle Domains. In: Salje E., Saxena A., Planes A. (eds) Avalanches in Functional Materials and Geophysics. Understanding Complex Systems. Springer, Cham. DOI: 10.1007/978-3-319-45612-6_8.
  • S. Puchberger et al., The noise of many needles: jerky domain wall propagation in PbZrO3 and LaAlO3, APL Mater 5 (4), 046102 (2017). DOI: 10.1063/1.4979616.
  • V. Soprunyuk et al., Strain intermittency due to avalanches in ferroelastic and porous materials, J. Phys. Condens. Matter. 29 (22), 224002 (2017). DOI: 10.1088/1361-648X/aa6bd2.
  • A. A. Middleton, Asymptotic uniqueness of the sliding state for charge-density waves, Phys. Rev. Lett. 68 (5), 670 (1992). DOI: 10.1103/PhysRevLett.68.670.
  • F. P. Landes, Viscoelastic interfaces driven in disordered media, Springer Theses (Recognizing Outstanding Ph.D. Research) (Springer, Cham, 2016), pp. 113–166. DOI: 10.1007/978-3-319-20022-4_5.
  • B. Casals et al., Electric-field-induced avalanches and glassiness of mobile ferroelastic twin domains in cryogenic SrTiO3, Phys. Rev. Res. 1 (3), 032025 (2019). DOI: 10.1103/PhysRevResearch.1.032025.
  • M. Shaira et al., Evaluation of the strain-induced martensitic transformation by acoustic emission monitoring in 304L austenitic stainless steel: identification of the AE signature of the martensitic transformation and power-law statistics, Mater. Sci. Eng. A 492 (1-2), 392 (2008). DOI: 10.1016/j.msea.2008.04.068.
  • N. Zreihan et al., Relations between stress drops and acoustic emission measured during mechanical loading, Phys. Rev. Mater 3 (4), 1 (2019). DOI: 10.1103/PhysRevMaterials.3.043603.
  • N. Zreihan et al., Coexistence of a well-determined kinetic law and a scale-invariant power law during the same physical process, Phys. Rev. B 97 (1), 014103 (2018). DOI: 10.1103/PhysRevB.97.014103.
  • E. Faran, E. K. H. Salje, and D. Shilo, The exploration of the effect of microstructure on crackling noise systems, Appl. Phys. Lett. 107 (7), 071902 (2015). DOI: 10.1063/1.4928928.
  • L. Mañosa et al., Acoustic emission at the premartensitic and martensitic transitions of Ni2MnGa shape memory alloy, MSF. 327-328, 481 (2000). DOI: 10.4028/www.scientific.net/MSF.327-328.481.
  • A. Planes, L. Mañosa, and E. Vives, Acoustic emission in martensitic transformations, J. Alloys Compd. 577, S699 (2013). DOI: 10.1016/j.jallcom.2011.10.082.
  • B. Ludwig et al., An acoustic emission study of the effect of a magnetic field on the martensitic transition in Ni2MnGa, Appl. Phys. Lett. 94 (12), 121901 (2009). DOI: 10.1063/1.3103289.
  • B. Ludwig et al., Premartensitic transition in Ni2MnGa Heusler alloys: acoustic emission study, Phys. Rev. B 80 (14), 144102 (2009). DOI: 10.1103/PhysRevB.80.144102.
  • J. Baró et al., Simultaneous detection of acoustic emission and Barkhausen noise during the martensitic transition of a Ni-Mn-Ga magnetic shape-memory alloy, Phys. Rev. B 88 (17), 174108 (2013). DOI: 10.1103/PhysRevB.88.174108.
  • R. Niemann et al., Localizing sources of acoustic emission during the martensitic transformation, Phys. Rev. B 89 (21), 214118 (2014). DOI: 10.1103/PhysRevB.89.214118.
  • E. K. H. Salje et al., Jerky elasticity: avalanches and the martensitic transition in Cu74.08Al23.13Be2.79 shape-memory alloy, Appl. Phys. Lett. 95 (23), 231908 (2009). DOI: 10.1063/1.3269578.
  • L. Carrillo et al., Experimental evidence for universality of acoustic emission avalanche distributions during structural transitions, Phys. Rev. Lett. 81 (9), 1889 (1998). DOI: 10.1103/PhysRevLett.81.1889.
  • F. J. Romero et al., Scale-invariant avalanche dynamics in the temperature-driven martensitic transition of a Cu-Al-Be single crystal, Phys. Rev. B 99 (22), 224101 (2019). DOI: 10.1103/PhysRevB.99.224101.
  • F.-J. Pérez-Reche et al., Kinetics of martensitic transitions in Cu-Al-Mn under thermal cycling: analysis at multiple length scales, Phys. Rev. B 69 (6), 064101 (2004). DOI: 10.1103/PhysRevB.69.064101.
  • E. Vives et al., Avalanche criticalities and elastic and calorimetric anomalies of the transition from cubic Cu-Al-Ni to a mixture of 18R and 2H structures, Phys. Rev. B 94 (2), 024102 (2016). DOI: 10.1103/PhysRevB.94.024102.
  • M. C. Gallardo et al., Avalanche criticality in the martensitic transition of Cu67.64Zn16.71Al15.65 shape-memory alloy: a calorimetric and acoustic emission study, Phys. Rev. B 81 (17), 174102 (2010). DOI: 10.1103/PhysRevB.81.174102.
  • J. Baró et al., Avalanche correlations in the martensitic transition of a Cu-Zn-Al shape memory alloy: analysis of acoustic emission and calorimetry, J. Phys. Condens. Matter 26 (12), 125401 (2014). DOI: 10.1088/0953-8984/26/12/125401.
  • F. J. Romero et al., Dynamic heat flux experiments in Cu67.64Zn16.71Al15.65: separating the time scales of fast and ultra-slow kinetic processes in martensitic transformations, Appl. Phys. Lett. 99 (1), 011906 (2011). DOI: 10.1063/1.3609239.
  • E. Vives et al., Statistics of avalanches in martensitic transformations. I. Acoustic emission experiments, Phys. Rev. B 52 (17), 12644 (1995). DOI: 10.1103/physrevb.52.12644.
  • E. Vives et al., Driving-induced crossover in the avalanche criticality of martensitic transitions, Phys. Rev. B 80 (18), 180101 (2009). DOI: 10.1103/PhysRevB.80.180101.
  • E. Bonnot et al., Acoustic emission in the fcc-fct martensitic transition of Fe68.8Pd31.2, Phys. Rev. B 78 (18), 184103 (2008). DOI: 10.1103/PhysRevB.78.184103.
  • B. Casals et al., Low-temperature dielectric anisotropy driven by an antiferroelectric mode in SrTiO3, Phys. Rev. Lett. 120 (21), 217601 (2018). DOI: 10.1103/PhysRevLett.120.217601.
  • E. K. H. Salje et al., Mechanical spectroscopy in twinned minerals: simulation of resonance patterns at high frequencies, Am. Mineral. 98 (8-9), 1449 (2013). DOI: 10.2138/am.2013.4433.
  • E. K. H. Salje et al., Thermally activated avalanches: jamming and the progression of needle domains, Phys. Rev. B 83 (10), 104109 (2011). DOI: 10.1103/PhysRevB.83.104109.
  • E. K. H. Salje, and X. Ding, Ferroelastic domain collapse and acoustic emission: non-equilibrium behaviour of multiferroic materials, in Avalanches in Functional Materials and Geophysics, edited by E. K. H. Salje, A. Saxena, and A. Planes (Springer International Publishing, Cham, 2017), pp. 137–156.
  • X. He et al., Parabolic temporal profiles of non-spanning avalanches and their importance for ferroic switching, Appl. Phys. Lett. 108 (7), 072904 (2016). DOI: 10.1063/1.4942387.
  • E. K. H. Salje et al., Polar twin boundaries and nonconventional ferroelectric switching, Appl. Phys. Lett. 106 (21), 212907 (2015). DOI: 10.1063/1.4922036.
  • Z. Zhao et al., Thermal and athermal crackling noise in ferroelastic nanostructures, J. Phys. Condens. Matter 26 (14), 142201 (2014). DOI: 10.1088/0953-8984/26/14/142201.
  • L. Zhang et al., Statistical analysis of emission, interaction and annihilation of phonons by kink motion in ferroelastic materials, Appl. Phys. Lett. 116 (10), 102902 (2020). DOI: 10.1063/1.5143977.
  • E. K. H. Salje et al., Simulating acoustic emission: the noise of collapsing domains, Phys. Rev. B 90 (6), 064103 (2014). DOI: 10.1103/PhysRevB.90.064103.
  • J. Chrosch, and E. K. H. Salje, Temperature dependence of the domain wall width in LaAlO3, J. Appl. Phys. 85 (2), 722 (1999). DOI: 10.1063/1.369152.
  • X. Ding et al., High junction and twin boundary densities in driven dynamical systems, Adv. Mater. 24 (39), 5385 (2012). DOI: 10.1002/adma.201200986.
  • L. Zhang et al., Strain rate dependence of twinning avalanches at high speed impact, Appl. Phys. Lett. 104 (16), 162906 (2014). DOI: 10.1063/1.4873520.
  • E. K. H. Salje et al., Ultrafast switching in avalanche-driven ferroelectrics by supersonic kink movements, Adv. Funct. Mater. 27 (21), 1700367 (2017). DOI: 10.1002/adfm.201700367.
  • G. Lu et al., Electrically driven ferroelastic domain walls, domain wall interactions, and moving needle domains, Phys. Rev. Mater 3 (11), 114405 (2019). DOI: 10.1103/PhysRevMaterials.3.114405.
  • G. Lu et al., Ferroelectric switching in ferroelastic materials with rough surfaces, Sci. Rep. 9 (1), 15834 (2019). DOI: 10.1038/s41598-019-52240-3.
  • G. Lu et al., Piezoelectricity and electrostriction in ferroelastic materials with polar twin boundaries and domain junctions, Appl. Phys. Lett. 114 (20), 202901 (2019). DOI: 10.1063/1.5092523.
  • Z. Zhao, X. Ding, and E. K. H. Salje, Flicker vortex structures in multiferroic materials, Appl. Phys. Lett. 105 (11), 112906 (2014). DOI: 10.1063/1.4896143.
  • E. K. H. Salje et al., Flexoelectricity and the polarity of complex ferroelastic twin patterns, Phys. Rev. B 94 (2), 024114 (2016). DOI: 10.1103/PhysRevB.94.024114.
  • M.-L. Rosinberg, and E. Vives, Metastability, Hysteresis, Avalanches, and Acoustic Emission: Martensitic Transitions in Functional Materials. In: Kakeshita T., Fukuda T., Saxena A., Planes A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-20943-7_13.
  • E. Salje, Phase transitions in ferroelastic and co-elastic crystals, Ferroelectrics 104 (1), 111 (1990). DOI: 10.1080/00150199008223816.
  • E. K. H. Salje et al., On the displacive character of the phase transition in quartz: a hard-mode spectroscopy study, J. Phys. Condens. Matter 4 (2), 571 (1992). DOI: 10.1088/0953-8984/4/2/025.
  • M. A. Carpenter et al., Calibration of excess thermodynamic properties and elastic constant variations associated with the alpha ↔ beta phase transition in quartz, Am. Mineral. 83 (1), 2 (1998). DOI: 10.2138/AM-1998-0101.
  • G. F. Nataf et al., Avalanches in compressed porous SiO2-based materials, Phys. Rev. E 90 (2), 022405 (2014). DOI: 10.1103/PhysRevE.90.022405.
  • E. K. H. Salje et al., Failure mechanism in porous materials under compression: crackling noise in mesoporous SiO2, Philos. Mag. Lett. 91 (8), 554 (2011). DOI: 10.1080/09500839.2011.596491.
  • J. Baró et al., Statistical similarity between the compression of a porous material and earthquakes, Phys. Rev. Lett. 110 (8), 088702 (2013). DOI: 10.1103/PhysRevLett.110.088702.
  • T. Beirau, and E. K. H. Salje, Nano-indentation and avalanches in compressed porous SiO2, Appl. Phys. Lett. 115 (7), 071902 (2019). DOI: 10.1063/1.5117499.
  • J. Baro et al., Experimental evidence of accelerated seismic release without critical failure in acoustic emissions of compressed nanoporous materials, Phys. Rev. Lett. 120 (24), 245501 (2018). DOI: 10.1103/PhysRevLett.120.245501.
  • J. L. Gázquez, A. Martinez, and F. Mendez, Relationship between energy and hardness differences, J. Phys. Chem. 97 (16), 4059 (1993). DOI: 10.1021/j100118a021.