121
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Temperature dependence of the piezoelectric resonance frequency in relation to the anomalous strain near the incommensurate phase of quartz

&
Pages 39-49 | Received 13 Apr 2020, Accepted 19 Oct 2020, Published online: 09 Feb 2021

References

  • G. Dolino, J. P. Bachheimer, and C. M. E. Zeyen, Observation of an intermediate phase near the α-β transition of quartz by heat capacity and neutron scattering measurements, Solid State Commun. 45 (3), 295 (1983). DOI: 10.1016/0038-1098(83)90485-4.
  • G. Dolino et al., Incommensurate phase of quartz: I. Elastic neutron scattering, J. Phys. France 45 (2), 361 (1984). DOI: 10.1051/jphys:01984004502036100.
  • M. Matsuura et al., Heat capacity in α-β phase transition of quartz, J. Phys. Soc. Jpn. 54 (2), 625 (1985). DOI: 10.1143/JPSJ.54.625.
  • H. Yao and I. Hatta, Phase transitions of quartz studied by a.c. calorimetry, Thermochim. Acta 266, 301 (1995). DOI: 10.1016/0040-6031(95)02450-6.
  • H. Yurtseven and M. Desticioğlu, Critical behaviour of the heat capacity near the α-β phase transition in quartz, High Temp. Mater. Process. 32 (2), 189 (2013). DOI: 10.1515/htmp-2012-0038.
  • H. Yurtseven and S. Ateş, Pippard relations and the analysis of the specific heat for the α-β transition in quartz, Int. J. Chem. 2, 48 (2013).
  • K. Gouhara, Y. H. Li, and N. Kato, Studies on the α-β transition of quartz by means of in situ X-ray topography, J. Phys. Soc. Jpn. 52 (11), 3821 (1983). DOI: 10.1143/JPSJ.52.3821.
  • J. Van Landuyt et al., Interpretation of Dauphiné-twin-domain configurations resulting from the α-β phase transition in quartz and aluminum phosphate, Phys. Rev. B 31 (5), 2986 (1985).
  • S. Karasawa, Origin of Piezoelectricity in an α-Quartz, Jpn. J. Appl. Phys. 13 (5), 799 (1974). DOI: 10.1143/JJAP.13.799.
  • A. Nikitin et al., Investigation of the structure and properties of quartz in the α-β transition range by neutron diffraction and mechanical spectroscopy, Crystallogr. Rep. 52 (3), 428 (2007). DOI: 10.1134/S1063774507030145.
  • B. Berge et al., Incommensurate phase of quartz. II: Brillouin scattering studies, J. Phys. France 45 (4), 715 (1984). DOI: 10.1051/jphys:01984004504071500.
  • S. M. Shapiro, D. C. O'Shea, and H. Z. Cummins, Raman scattering study of the alpha-beta phase transition in quartz, Phys. Rev. Lett. 19 (7), 361 (1967). DOI: 10.1103/PhysRevLett.19.361.
  • H. Yurtseven and M. C. Lider, Raman frequency calculated from the volume data for α-β transition in quartz, J. Condens. Matter Phys. 2 (1), 1 (2014). doi:10.12966/jcmp02.01.2014.
  • H. Yurtseven and O. Tari, Calculation of the soft-mode frequency for the alpha–beta transition in quartz, Optik 127 (10), 4470 (2016). DOI: 10.1016/j.ijleo.2016.01.167.
  • M. G. Tucker, M. T. Dove, and D. A. Keen, Simultaneous analysis of changes in long-range and short-range structural order at the displacive phase transition in quartz, J. Phys. Condens. Matter 12, 723 (2000).
  • G. Dolino et al., Origin of the incommensurate phase of quartz: I. Inelastic neutron scattering study of the high temperature β phase of quartz, J. Phys. I France 2 (7), 1461 (1992). DOI: 10.1051/jp1:1992222.
  • K. Gouhara and N. Kato, Refined observations of satellite reflections in the intermediate phase of quartz, J. Phys. Soc. Jpn. 53 (7), 2177 (1984). DOI: 10.1143/JPSJ.53.2177.
  • K. Abe et al., Effect of uniaxial stress on central peaks in the 1q and 3q incommensurate phase of quartz, J. Phys. Soc. Jpn. 60 (2), 404 (1991). DOI: 10.1143/JPSJ.60.404.
  • K. Abe et al., Lineshape of brillouin spectra in the incommensurate phase of quartz (SiO2): analysis by Fano's formula, Ferroelectrics 203 (1), 153 (1997). DOI: 10.1080/00150199708012842.
  • M. Kurt and H. Yurtseven, Temperature dependence of the Raman frequency shifts and the linewidths in the α phase of quartz, Balkan Phys. Lett. 19, 362 (2011).
  • M. C. Lider and H. Yurtseven, Calculation of the Raman linewidths of lattice modes close to the α-β transition in quartz, High Temp. Mater. Process. 31 (6), 741 (2012). DOI: 10.1515/htmp-2012-0004.
  • G. Dolino and P. Bastie, Phase transitions of quartz, Key Eng. Mater. 101–102, 285 (1995). DOI: 10.4028/www.scientific.net/KEM.101-102.285.
  • J. Pelous and R. Vacher, Thermal Brillouin scattering in crystalline and fused quartz from 20 to 1000 °C, Solid State Commun. 18 (5), 657 (1976). DOI: 10.1016/0038-1098(76)91505-2.
  • J. P. Bachheimer, An anomaly in the β phase near the α-β transition of quartz, J. Phys. Lett. 41 (23), 559 (1980). DOI: 10.1051/jphyslet:019800041023055900.
  • B. S. Hemingway, Quartz; heat capacities from 340 to 1000 K and revised values for the thermodynamic properties, Am. Mineral. 72, 273 (1987).
  • G. Dolino and J. P. Bachheimer, Thermodynamical behaviour of quartz around the transitions between α, ıncommensurate and β phases, in Phase Transformation in Solids, Material Research Society Symposia, Proc., edited by Th. Tsakalakos (Cambridge University Press, Cambridge, 1984), Vol. 21, p. 803.
  • M. C. Lider and H. Yurtseven, Calculation of the resonant frequencies in the vicinity of the α-β transition in quartz, Int. J. Thermophys. 36 (7), 1585 (2015). DOI: 10.1007/s10765-015-1884-5.
  • M. C. Lider and H. Yurtseven, Correlations between the resonant frequency shifts and the thermodynamic quantities for the α-β transition in quartz, J. Mol. Struct. 1159, 1 (2018). DOI: 10.1016/j.molstruc.2018.01.053.
  • H. Yurtseven, U. Ipekoğlu, and S. Ateş, Calculation of the tilt angle and susceptibility for the α–β transition in quartz using a mean field model, Mod. Phys. Lett. B 31 (9), 1750092 (2017). DOI: 10.1142/S0217984917500920.
  • H. Yurtseven and S. Ates, Resonant frequency shifts related to the elastic constants near the α-β transition in quartz, J. Mol. Struct. 1179, 421 (2019). DOI: 10.1016/j.molstruc.2018.11.044.[Mismatch ]
  • S. Ishibashi et al., Acoustic phonon dispersion of SiO2 (quartz) near the incommensurate phase transition, Physica B 219–220, 593 (1996). DOI: 10.1016/0921-4526(95)00822-5.[Mismatch ]
  • E. J. K. B. Banda et al., α-β transition in quartz: classical versus critical behavior, Solid State Commun. 17 (1), 11 (1975). DOI: 10.1016/0038-1098(75)90323-3.
  • W. Cochran, Crystal stability and the theory of ferroelectricity part II. Piezoelectric crystals, Adv. Phys. 10 (40), 401 (1961). DOI: 10.1080/00018736100101321.
  • H. E. Stanley, Introduction to Phase Transition and Critical Phenomena (Oxford University Press, London, 1971).
  • J. J. Binner et al., The Theory of Critical Phenomena: An Introduction to the Renormalization Group (Oxford University Press Inc., New York, 1992).
  • G. Dolino, The α-inc-β transitions of quartz: a century of research on displacive phase transitions, Phase Trans. 21 (1), 59 (1990). DOI: 10.1080/01411599008206882.
  • U. Höchli and J. F. Scott, Displacement parameter, soft-mode frequency, and fluctuations in quartz below its α − β phase transition, Phys. Rev. Lett. 26 (26), 1627 (1971). DOI: 10.1103/PhysRevLett.26.1627.
  • R. Young, Mechanism of the phase transition in quartz, Office of Sci. Res. Rept. No. 2569, 1962.
  • A. P. Levanyuk and D. G. Sannikov, Theoretical temperature-pressure phase diagram for {N(CH3)4}2ZnCl4, Sov. Phys. 185, 1122 (1976).
  • D. Durand et al., Etude par rayons X et par neutrons de la phase incommensurable du nitrite de sodium, J. Phys. 43, 145 (1982).
  • F. Denoyer et al., Effect of hydrostatic pressure on modulated structures in thiourea, Phys. Rev. B. 25 (3), 1697 (1982). DOI: 10.1103/PhysRevB.25.1697.
  • C. Kuşoğlu Sarıkaya and H. Yurtseven, Temperature dependence of the spontaneous polarization near the ferroelectric-paraelectric transition in NaNO2, High Temp. Mater. Process. 32 (1), 77 (2013). DOI: 10.1515/htmp-2012-0066.
  • H. Yurtseven and C. Kusoglu Sarikaya, Investigation of the ferroelectric paraelectric phase transition in bulk and confined sodium nitrite, Ferroelectrics 467 (1), 42 (2014). DOI: 10.1080/00150193.2014.932170.
  • H. Yurtseven and K. Kaymazlar, Temperature dependence of the Bragg peak-intensity close to the α-incommensurate-β transition in quartz, J. Solid State Phys. 2014, 530540 (2014). DOI: 10.1155/2014/538540.
  • M. C. Lider and H. Yurtseven, Temperature dependence of the Raman frequency of an ınternal mode for SiO2-moganite close to the α-β transition, J. Thermodyn. 2012, 892696 (2012).
  • M. C. Lider, and H. Yurtseven, α-β transition in quartz: temperature and pressure dependence of the thermodynamic quantities for β-quartz and β-cristobalite as piezoelectric materials, 3D Res. 5, 28 (2014).
  • W. Press et al., Neutron scattering study of the one-dimensional ionic conductor β-eucryptite, Phys. Rev. B 21 (3), 1250 (1980). DOI: 10.1103/PhysRevB.21.1250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.