69
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Electrical studies on Na and Sm substituted strontium bismuth titanate (SBTi) ceramics

, &
Pages 61-75 | Received 25 Apr 2020, Accepted 21 Aug 2020, Published online: 09 Feb 2021

References

  • A. Moure, Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System, Appl. Sci. 8 (1), 62 (2018). DOI: 10.3390/app8010062.
  • I. M. Reaney and D. Damjanovic, Crystal structure and domain-wall contributions to the piezoelectric properties of strontium bismuth titanate ceramics, J. Appl. Phys. 80 (7), 4223 (1996). DOI: 10.1063/1.363301.
  • E. C. Subba Rao, Ferroelectricity in Bi4Ti3O12 and its Solid Solutions, Phy. Rev. 122, 804 (1961).
  • S. K. Kim, M. Miyayama, and H. Yanagida, Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal, J. Mater. Res. Bull. 31 (1), 121 (1996). DOI: 10.1016/0025-5408(95)00161-1.
  • B. Mamatha and P. Sarah, Effect of dysprosium substitution on electrical properties of SrBi4Ti4O15, Mater. Chem. Phys. 147 (3), 375 (2014). DOI: 10.1016/j.matchemphys.2014.03.036.
  • C. Jin et al., Ferroelectric and dielectric properties of niobium-doped SrBi4Ti4O15 ceramics, J. Phys. D Appl. Phys. 39 (11), 2415 (2006). DOI: 10.1088/0022-3727/39/11/015.
  • J. Zhu, X. Y. Mao, and X. B. Chen, Properties of vanadium-doped SrBi4Ti4O15 ferroelectric ceramics, Solid State Commun. 129 (11), 707 (2004). DOI: 10.1016/j.ssc.2003.12.024.
  • J. Wang et al., Structural Evolution and Multiferroics in Sr-Doped Bi7Fe1.5Co1.5Ti3O21, J. Am. Ceram. Soc. 98 (5), 1528 (2015). DOI: 10.1111/jace.13495.
  • C. M. Raghavan, J. W. Kim, and S. S. Kim, Structural, Electrical, and Ferroelectric Properties of Nb-Doped Na0.5Bi4.5Ti4O15Thin Films, J. Am. Ceram. Soc. 98 (10), 3153 (2015). DOI: 10.1111/jace.13744.
  • Zulhadjri, B. Prijamboedi et al., Ismunandar, Aurivillius phases of PbBi4Ti4O15 doped with Mn3+ synthesized by molten salt technique, Structure, dielectric, and magnetic properties, J. Solid State Chem. 184, 1318 (2011). DOI: 10.1016/j.jssc.2011.03.044.
  • E. V. Ramana et al., Effect of samarium and vanadium co-doping on structure, ferroelectric and photocatalytic properties of bismuth titanate, RSC Adv. 7 (16), 9680 (2017). DOI: 10.1039/C7RA00021A.
  • B. H. Park et al., Lanthanum-substituted bismuth Titanate for use in non-volatile memories, Nat. London 401 (6754), 682 (1999). DOI: 10.1038/44352.
  • T. Kikuchi Mater, Stability of layered bismuth compounds in relation to the structural mismatch, Res. Bull. 14 (12), 1561 (1979). DOI: 10.1016/0025-5408(72)90226-7.
  • A. Tkach et al., Broad-band dielectric spectroscopy analysis of relaxational dynamics in Mn-doped SrTiO3 ceramics, Phys. Rev.B 73, 104 (2006).
  • A. R. James, Effect of oxygen assisted sintering on piezoelectric properties of SrBi4Ti4O15ceramics prepared via high energy mechanochemical processing, Ceram. Int. 41 (3 Part B), 5100 (2015). DOI: 10.1016/j.ceramint.2014.12.082.
  • K. Ashok and P. Sarah, Electrical Properties Sodium and Neodymium Modified SrBi4Ti4O15 Piezoelectric Ceramics, Ferroelectrics 524 (1), 86 (2018). DOI: 10.1080/00150193.2018.1432875.
  • S. Kojima and S. Shimada, Soft mode spectroscopy of bismuth titanate single crystals, Phys. B 219-220, 617 (1996). DOI: 10.1016/0921-4526(95)00830-6.
  • P. Nayak et al., Possible relaxation and conduction mechanism in W6+doped SrBi4Ti4O15 ceramic, Ceram. Int. 43 (5), 4527 (2017). DOI: 10.1016/j.ceramint.2016.12.105.
  • C. Long et al., H Fan Morphology, molecular stacking, dynamics and device performance correlations of vacuum deposited small-molecule organic solar cells, J. Mater. Chem. C 3 (34), 8852 (2015). DOI: 10.1039/C3CP55385J.
  • U. Ravikiran et al., Effect of Sm and Na substitution on dielectric properties of SrBi4Ti4O15, Ferroelectrics 537 (1), 237 (2018). DOI: 10.1080/00150193.2018.1528947.
  • U. Ravikiran et al., Influence of Na, Sm substitution on dielectric properties of SBT ceramics, Ceram. Int. 45 (15), 19242 (2019). DOI: 10.1016/j.ceramint.2019.06.172.
  • B. Mamatha, and P. Sarah Synthesis, Characterization and Electrical Properties of La Modified SrBi4Ti3.975Zr0.025O15, Ferroelectric 482 (1), 90 (2015). DOI: 10.1080/00150193.2015.1057071.
  • P. Tirupathi et al., Diffused phase transitions in Pb(Zr0.65Ti0.35)O3-Pb (Fe2/3W1/3)O3 multiferroics, J. of App. Phys. 117 (7), 074105 (2015). DOI: 10.1063/1.4908222.
  • S. M. Rizwana, and P. Sarah, Impedance and electromechancial studies on Ca0.1Sr0.9LaxBi2-xTa2O9 ceramics, Ferroelectrics 524, 95 (2018).
  • G. Anand, P. Kuchhal, and P. Sarah, AC and DC Conductivity Studies on Lead-Free Ceramics: Sr1–xCaxBi4Ti4O15(x = 0, 0.2, 0.4, 0.6, 0.8), Particulate Sci. Technol. Int. J. 33 (1), 41 (2015). DOI: 10.1080/02726351.2014.933146.
  • Rizwana, P. Sarah, Dielectric, Ferroelectric and Piezoelectric Properties of Sr0.8Na0.1Nd0.1Bi4Ti4O15 Prepared by Sol Gel and Solid State Technique, Ferroelectrics 467 (1), 181 (2014). DOI: 10.1080/00150193.2014.932616.
  • G. Anand, A. R. James, and P. Sarah, Dielectric and Impedance spectroscopy of Ca substituted in SrBi4Ti4O15 ceramics, Integr. Ferroelectr. 116 (1), 137 (2010). DOI: 10.1080/10584587.2010.489411.
  • Rizwana, T. Radhakrishna, and P. Sarah, Ac Conductivity and Dielectric Studies on Sr0.6Na0.2Nd0.2Bi4Ti4O15 Ceramic, Modern Phys. Lett. B 22 (10), 775 (2008). DOI: 10.1142/S0217984908015243.
  • P. Nayak, and A. K. Singh, Correlation between orthorhombic distortion with relaxation and Conduction mechanism of Gd3+ modified SrBi4Ti4O15 ceramics, Ceram. Int. 0272-8842 (18), 32541 (2018).
  • R. Rizwana et al., Impedance spectroscopy of Nd and Na doped SBT, Cryst. Res. Technol. 42 (7), 699 (2007). DOI: 10.1002/crat.200610891.
  • S. Dutta et al., Microstructural studies of (PbLa)(ZrTi)O3 ceramics using complex impedance spectroscopy, J. Appl. Phys 96 (3), 1607 (2004). DOI: 10.1063/1.1765869.
  • W. Kim et al., Low-frequency dielectric relaxation and ac conduction of SrBi2Ta2O9 thin film grown by pulsed laser deposition, Appl. Phys. Lett. 80 (21), 4006 (2002). DOI: 10.1063/1.1482138.
  • A. R. James, S. Balaji, and S. B. Krupanidhi, Impedance-fatigue co-related studies on SrBi2Ta2O9, Mater. Sci. Engg. B 64 (3), 149 (1999). DOI: 10.1016/S0921-5107(99)00039-2.
  • L. Miladi, A. Oueslati, and K. Guidara, Phase transition, conduction mechanism and modulus study of KMgPO4 compound, RSC Adv. 6 (86), 83280 (2016). DOI: 10.1039/C6RA18560F.
  • F. Rehman, H. B. Jin, and J. B. Li, Effect of reduction/oxidation annealing on the dielectric relaxation and electrical properties of Aurivillius Na0.5Gd0.5Bi4Ti4O15 ceramics, RSC Adv. 6 (41), 35102 (2016). DOI: 10.1039/C6RA04628B.
  • D. C. Sinclair, and A. R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3showing positive temperature coefficient of resistance, J. Appl. Phys. 66 (8), 3850 (1989). DOI: 10.1063/1.344049.
  • A. Kaushal et al., Impedance analysis of 0.5 Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics consolidated from micro-granules, Ceram Int. 40 (7), 10593 (2014). DOI: 10.1016/j.ceramint.2014.03.038.
  • J. L. Zhang et al., Dielectric dispersion of CaCu3Ti4 O12 ceramics at high temperatures, Appl. Phys. Lett. 87 (14), 142901 (2005). DOI: 10.1063/1.2077864.
  • U. Ravikiran et al., Impedance spectroscopy studies on samarium and sodium substituted Strontium bismuth titanate (SBTi), Ceram Int. 45 (12), 15188 (2019). DOI: 10.1016/j.ceramint.2019.05.003.
  • P. Sarah et al., Effects of La & Ca substitution in SrBi4Ti4O15 ceramics prepared via high energy mechanical sintering, Defence Sci. J. 7 (1), 29 (2007).
  • G. Anand et al., Dielectric, ferroelectric and piezoelectric properties of Ca0.5Sr0.5Bi4Ti4O15 prepared by solid state technique, Ferroelectrics 516 (1), 36 (2017). DOI: 10.1080/00150193.2017.1362277.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.