97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational, dielectric and electro-optical analysis of an orthoconic antiferroelectric mesogen having superstructure in its reduced symmetry phase

, &
Pages 258-276 | Received 27 Feb 2020, Accepted 14 Jul 2020, Published online: 09 Mar 2021

References

  • A. Mishra, R. Dabrowski, and R. Dhar, Dielectric characteristics of highly ionic antiferroelectric liquid crystalline material, J. Mol. Liq. 249, 106 (2018). DOI: 10.1016/j.molliq.2017.11.025.
  • M. Żurowska et al., Effect of lateral fluorine substitution far from the chiral center on mesomorphic behaviour of highly titled antiferroelectric (S) and (R) enantiomers, J. Mol. Liq. 267, 504 (2018). DOI: 10.1016/j.molliq.2017.12.114.
  • R. K. Khan et al., Impact of terminal polar substitution on elastic, electro-optic and dielectric properties of four-ring bent-core nematic liquid crystals, RSC Adv. 8 (21), 11509 (2018). DOI: 10.1039/C8RA00575C.
  • S. Marzouk et al., Synthesis and mesomorphic properties of liquid crystals containing a perfluorinated segment via different linkers, J. Fluor. Chem. 197, 15 (2017). DOI: 10.1016/j.jfluchem.2017.02.006.
  • K. Kurp et al., Design of functional multicomponent liquid crystalline mixtures with nano-scale pitch fulfilling deformed helix ferroelectric mode demands, J. Mol. Liq. 290 111329 (1–10) (2019). DOI: 10.1016/j.molliq.2019.111329.
  • A. Sharma et al., Improvement in electro-optical and dielectric characteristics of ZnO nanoparticles dispersed in a nematic liquid crystal mixture, Bull. Mater. Sci. 42 (215), 1–9 (2019). DOI: 10.1007/s12034-019-1902-5.
  • D. Singh et al., Dielectric and electro-optic behaviour of nematic-SWCNT nanocomposites under applied bias field, Liq. Cryst. 46 (9), 1389 (2019). DOI: 10.1080/02678292.2019.1573329.
  • D. Jayoti, P. Malik, and A. Singh, Analysis of morphological behaviour and electro-optical properties of silica nanoparticles doped polymer dispersed liquid crystal composites, J. Mol. Liq. 225, 456 (2017). DOI: 10.1016/j.molliq.2016.11.100.
  • G. V. Varshini et al., Suppression of the reentrant nematic and stabilization of the smectic phases by carbon nanotubes, J. Mol. Liq. 286, 110858 (2019). DOI: 10.1016/j.molliq.2019.04.135.
  •  Chinky et al., Nano particles induced vertical alignment of liquid crystal for display devices with augmented morphological and electro-optical characteristics, J. Mol. Struct. 866–873 (2019). DOI: 10.1016/J.MOLSTRUC.2019.06.045.
  • M. Czerwiński et al., Influence of the type of phase sequence and polymer-stabilization on the physicochemical and electro-optical properties of novel high-tilt antiferroelectric liquid crystalline materials, J. Mol. Liq. 288, 111057(1-10) (2019). DOI: 10.1016/j.molliq.2019.111057.
  • S. T. Hyde, Liquid crystals, Curr. Opin. Colloid Interface Sci. 9 (6), 363 (2005). DOI: 10.1016/j.cocis.2005.03.001.
  • M. S. E. Peterson et al., Dielectric analysis of the interaction of nematic liquid crystals with carbon nanotubes, Liq. Cryst. 45 (3), 450 (2018). DOI: 10.1080/02678292.2017.1346212.
  • S. Havriliak and S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer (Guildf) 8, 161 (1967). DOI: 10.1016/0032-3861(67)90021-3.
  • D. W. Davidson and R. H. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol, J. Chem. Phys. 19 (12), 1484 (1951). DOI: 10.1063/1.1748105.
  • I. Dierking, Textures of Liquid Crystals (Weinheim, Germany, Wiley, 2003) https://onlinelibrary.wiley.com/doi/book/10.1002/3527602054.
  • S. Singh, Liquid Crystals: Fundamentals (Singapore, World Scientific, 2002).
  • M. Rahman et al., Field driven ferroelectric-ferroelectric transition: Evidence of antiferroelectric Goldstone mode in the SmCA* phase, Chem. Phys. Lett. 449 (1–3), 92 (2007). DOI: 10.1016/j.cplett.2007.10.027.
  • J. Cioslowski, A new population analysis based on atomic polar tensors, J. Am. Chem. Soc. 111 (22), 8333 (1989). DOI: 10.1021/ja00204a001.
  • D. Gupta and A. Bhattacharjee, Detailed investigation of N-(4-n-pentyl-oxybenzylidene)-4′-n-hexylaniline liquid crystal molecule, J. Mol. Struct. 1196, 66 (2019). DOI: 10.1016/j.molstruc.2019.06.068.
  • S. S. Bhattacharyya et al., Field induced modification of SmC*-SmCA* transition temperature of a fluorinated antiferroelectric liquid crystal, Curr. Appl. Phys. 9 (2), 390 (2009). DOI: 10.1016/j.cap.2008.03.012.
  • A. K. Srivastava et al., Electro-optical and dielectric relaxation studies of an antiferroelectric liquid-crystal mixture (W-132A), J. Appl. Phys. 98 013543(1-8) (2005). DOI: 10.1063/1.1968426.
  • P. Debye, Polar molecules (The Chemical Catalog Company, New York, 1929).
  • K. C. Dey, P. Kumar Mandal, and R. Dabrowski, Materials Today: Proceedings (Amsterdam, Elsevier Ltd., 2016), Vol. 3, pp. 3987–3991. DOI: 10.1016/j.matpr.2016.11.061.
  • M. B. Pandey, R. Dabrowski, and R. Dhar, Investigation of relaxation processes in anticlinic smectic C*(SmCA*) phase of Liquid Crystals by dielectric spectroscopy, Phys. B Condens. Matter 387 (12), 25 (2007). DOI: 10.1016/j.physb.2006.03.023.
  • M. Buivydas et al., The molecular aspect of the double absorption peak in the dielectric spectrum of the antiferroelectric liquid crystal phase, Liq. Cryst. 18 (6), 879 (1995). DOI: 10.1080/02678299508036706.
  • B. Barman et al., Effect of molecular structure on dielectric and electro-optic properties of chiral liquid crystals based on lactic acid derivatives, J. Mol. Liq. 283, 472 (2019). DOI: 10.1016/j.molliq.2019.03.071.
  • S. K. Kundu et al., Soft mode and related behaviour in the SmA and SmC* phases of a ferroelectric liquid crystalline polymer by dielectric spectroscopy, Liq. Cryst. 29 (6), 837 (2002). DOI: 10.1080/02678290210133123.
  • T. Vimal et al., Investigation of thermodynamical, dielectric and electro-optical parameters of nematic liquid crystal doped with polyaniline and silver nanoparticles, J. Mol. Liq. 290 111241(1-7) (2019). DOI: 10.1016/j.molliq.2019.111241.
  • J. Ma and L. Xuan, Towards nanoscale molecular switch-based liquid crystal displays, Displays 34 (4), 293 (2013). DOI: 10.1016/j.displa.2013.05.005.
  • R. Manda et al., Self-supported liquid crystal film for flexible display and photonic applications, J. Mol. Liq. 291 (2019). DOI: 10.1016/j.molliq.2019.111314.
  • J. C. Torres et al., Photonic Materials, Devices, and Applications II (Washington, SPIE, 2007), 6593, 111314(1-9), pp. 65930Z.
  • A. Mochizuki, Molecular tilting effect on Smectic liquid crystal sub-phase stability from its retardation switching behavior, J. Mol. Liq. 267, 456 (2018). DOI: 10.1016/j.molliq.2017.12.117.
  • I. I. Rushnova et al., Electrically switchable photonic liquid crystal devices for routing of a polarized light wave, Opt. Commun. 413, 179 (2018). DOI: 10.1016/j.optcom.2017.12.029.
  • H. E. Milton et al., Liquid crystal contact lenses and the correction of presbyopia, Contact Lens Anterior Eye 35, e14 (2012). DOI: 10.1016/j.clae.2012.08.043.
  • K. Shcherbin, I. Gvozdovskyy, and D. R. Evans, Liquid crystal light valve with a semiconductor substrate for dynamic holography in the infrared, J. Mol. Liq. 267, 61 (2018). DOI: 10.1016/j.molliq.2017.12.073.
  • J. Hemine et al., Structural, electro-optical and dielectric characterizations of ferroelectric liquid crystals showing the SmC*-SmA*-N* phase sequence, Phys. B Condens. Matter 390 (1–2), 34 (2007). DOI: 10.1016/j.physb.2006.07.049.
  • K. Miyasato et al., Direct method with triangular waves for measuring spontaneous polarization in ferroelectric liquid crystals, Jpn. J. Appl. Phys. Part 2 Lett 22, 661 (1983).
  • M. Chemingui et al., The effect of optical purity on the coexistence phenomenon and on the polarization – electric field hysteresis behavior in SmC* and SmC*A phases, J. Mol. Liq. 222, 1101 (2016). DOI: 10.1016/j.molliq.2016.08.017.
  • A. Debnath and P. K. Mandal, Effect of fluorination on the phase sequence, dielectric and electro-optical properties of ferroelectric and antiferroelectric mixtures, Liq. Cryst. 44 (14–15), 2192 (2017). DOI: 10.1080/02678292.2017.1333640.
  • A. K. Singh et al., Thermodynamic, optical and switching parameters of a ferroelectric liquid crystalline material having SmA*-SmC*-SmB h * phase sequence, Phase Transitions 91 (8), 811 (2018). DOI: 10.1080/01411594.2018.1494273.
  • D. Gupta, P. Kula, A. Bhattacharjee, Mesomorphic, electro-optic and dielectric behaviour of a semi-fluorinated chiral liquid crystalline material forming polar smectic phases. J. Mol. Struct. 1219, 128557 (2020). DOI: 10.1016/j.molstruc.2020.128557.
  • D. Gupta, P. Kula, A. Bhattacharjee, Detailed analysis of a room temperature antiferroelectric liquid crystalline material forming polar mesophases. J. Mol. Liq., 114859 (2020). DOI: 10.1016/j.molliq.2020.114859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.