103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Compatibility of composite biomaterials in repairing bone tissue damage in sports competitions

Pages 104-117 | Received 19 Aug 2020, Accepted 12 Feb 2021, Published online: 15 Aug 2021

References

  • W. Cunyang et al., The use of bioactive peptides to modify materials for bone tissue repair[J], Regener. Biomater. 4 (3), 191 (2017).
  • D. Francesca et al., Biofunctionalized Scaffold in bone tissue repair[J], IJMS 19 (4), 1022 (2018). DOI: 10.3390/ijms19041022.
  • Y. Zhao et al., Knowledge-aided convolutional neural network for small organ segmentation, IEEE J Biomed Health Inform 23 (4), 1363 (2019). DOI: 10.1109/JBHI.2019.2891526.
  • O. Trubiani et al., Human oral stem cells, biomaterials and extracellular vesicles: A promising tool in bone tissue repair[J], IJMS. 20 (20), 4987 (2019). DOI: 10.3390/ijms20204987.
  • L. Zhao et al., Bionic design and 3D printing of porous titanium alloy Scaffolds for bone tissue repair[J], Composites 162, 154 (2019). DOI: 10.1016/j.compositesb.2018.10.094.
  • C. Luyuan et al., Drug-loadable calcium alginate hydrogel system for use in oral bone tissue repair[J], Int. J. Mol. Ences 18 (5), 989 (2017).
  • B. Adriana, and B. Elisa, Functionalized biomimetic calcium phosphates for bone tissue repair[J], J. Appl. Biomater. Fundamental Mater. 15 (4), e313 (2017).
  • O. J. Augusto et al., Bioactive molecule-loaded drug delivery systems to optimize bone tissue repair[J], Curr. Protn. Pept. 18 (8), 850 (2017).
  • M. M. Babu et al., Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: Impact of Ti4 + on physico-mechanical and in vitro bioactivity[J], Ceram. Int. 45 (17), 23715 (2019). DOI: 10.1016/j.ceramint.2019.08.087.
  • T.U. Fiume et al., Dolomite-foamed bioactive silicate scaffolds for bone tissue repair[J], Materials 13 (3), 628 (2020). DOI: 10.3390/ma13030628.
  • T. Zhang et al., Ammonium nitrogen recovery from digestate by hydrothermal pretreatment followed by activated hydrochar sorption, Chem. Eng. J. 379, 122254 (2020). DOI: 10.1016/j.cej.2019.122254.
  • Y. Cao et al., An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm, Energy Rep. 6, 530 (2020). DOI: 10.1016/j.egyr.2020.02.035.
  • X. Liu et al., Complex silica composite nanomaterials templated with DNA origami[J], Nature 559 (7715), 593 (2018). DOI: 10.1038/s41586-018-0332-7.
  • X. Q. Liu, and R. Z. Tang, Biological responses to nanomaterials: understanding nano-bio effects on cell behaviors[J], Drug Deliv. 24 (sup1), 1 (2017). DOI: 10.1080/10717544.2017.1375577.
  • M. Patel et al., Composite system of graphene oxide and polypeptide thermogel as an injectable 3D Scaffold for adipogenic differentiation of tonsil-derived mesenchymal stem cells[J], ACS Appl. Mater. Interfaces 8 (8), 5160 (2016). DOI: 10.1021/acsami.5b12324.
  • S. L. Lee, and C. J. Chang, Recent progress on metal sulfide composite nanomaterials for photocatalytic hydrogen production[J], Catalysts 9 (5), 457 (2019). DOI: 10.3390/catal9050457.
  • T. Lou et al. , Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures, Mater. Sci. Eng. C. Mater. Biol. Appl. SciEngCBiolAppl64, 341 (2016). DOI: 10.1016/j.msec.2016.03.107.
  • P. E. Agbo, P. A. Nwofe, and E. U. Ahworehe, Morphological and optical properties of polymer capped Zno nanoparticles[J], Digest J. Nanomater. Biostruct. 12 (3), 653 (2017).
  • A. Gao et al., In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing[J], Sensors & Actuators B. Chem. 232, 150 (2016). DOI: 10.1016/j.snb.2016.03.122.
  • P. Özyol, E. Özyol, and F. Karel, Biocompatibility of intraocular lenses[J], Turk. J. Ophthalmol. 47 (4), 221 (2017). DOI: 10.4274/tjo.10437.
  • X. Li et al., Biocompatibility and physicochemical characteristics of poly(-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering[J], Mater. & Design 114, 149 (2017). DOI: 10.1016/j.matdes.2016.10.054.
  • X. Sun et al., Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers, Nonlinear Dyn. 94 (2), 1243 (2018). DOI: 10.1007/s11071-018-4421-9.
  • S. Agarwal et al., Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J], Mater. Sci. Eng. C. Mater. Biol. Appl. SciEngCBiolAppl. 68, 948 (2016). DOI: 10.1016/j.msec.2016.06.020.
  • S. Gurunathan, and J. H. Kim, Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials[J], Int. J. Nanomedicine. 11, 1927 (2016). DOI: 10.2147/IJN.S105264.
  • V. Kalidasan et al., Bovine serum albumin-conjugated ferrimagnetic iron oxide nanoparticles to enhance the biocompatibility and magnetic hyperthermia performance[J], Nanomicro. Lett. 8 (1), 80 (2016). DOI: 10.1007/s40820-015-0065-1.
  • L.,T. Jing et al., Enhanced anti-corrosion ability and biocompatibility of PLGA coatings on MgZnYNd alloy by BTSE-APTES pre-treatment for cardiovascular stent[J], J. Mater. Ence & Technol. 32 (9), 845 (2016). DOI: 10.1016/j.jmst.2016.06.021.
  • J. H. Chung et al. , Synthesis, characterization, biocompatibility of hydroxyapatite-natural polymers nanocomposites for dentistry applications, Artif. Cells. Nanomed. Biotechnol. 44 (1), 277 (2016). DOI: 10.3109/21691401.2014.944644.
  • M. Catauro et al., Investigation of bioactivity, biocompatibility and thermal behavior of sol-gel silica glass containing a high PEG percentage.[J], Mater. Sci. Eng. C Mater. Biol. Appl. SciEngCBiolAppl. 61, 51 (2016). DOI: 10.1016/j.msec.2015.11.077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.