76
Views
0
CrossRef citations to date
0
Altmetric
Domain structure and polarization reversal processes

Decay of domains created by local switching on non-polar cut of MgO doped LiNbO3 single crystals

, , , &
Pages 12-18 | Received 25 Aug 2021, Accepted 19 Jan 2022, Published online: 08 Jul 2022

References

  • P. S. Bednyakov et al., Physics and applications of charged domain walls, Npj Comput. Mater. 4, 65 (2018). DOI: 10.1038/s41524-018-0121-8.
  • G. Catalan et al., Domain wall nanoelectronics, Rev. Mod. Phys. 84 (1), 119 (2012). DOI: 10.1103/RevModPhys.84.119.
  • A. Q. Jiang, and Y. Zhang, Next-generation ferroelectric domain-wall memories: principle and architecture, NPG Asia Mater. 11 (1), 2 (2019). DOI: 10.1038/s41427-018-0102-x.
  • X. Chai et al., Nonvolatile ferroelectric field-effect transistors, Nat. Commun. 11 (1), 2811 (2020). DOI: 10.1038/s41467-020-16623-9.
  • D. Meier, Functional domain walls in multiferroics, J. Phys. Condens. Matter 27 (46), 463003 (2015). DOI: 10.1088/0953-8984/27/46/463003.
  • A. Q. Jiang et al., Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers, Nat. Mater. 19 (11), 1188 (2020). DOI: s41563-020-0702-z. DOI: 10.1038/s41563-020-0702-z.
  • T. Kämpfe et al., Tunable non-volatile memory by conductive ferroelectric domain walls in lithium niobate thin films, Crystals 10 (9), 804 (2020). DOI: 10.3390/cryst10090804.
  • E. A. Eliseev et al., Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors, Phys. Rev. B 83 (23), 235313 (2011). DOI: 10.1103/PhysRevB.83.235313.
  • A. A. Esin, A. R. Akhmatkhanov, and V. Y. Shur, Tilt control of the charged domain walls in lithium niobate, Appl. Phys. Lett. 114 (9), 092901 (2019). DOI: 10.1063/1.5079478.
  • C. Godau et al., Enhancing the domain wall conductivity in lithium niobate single crystals, ACS Nano 11 (5), 4816 (2017). DOI: 10.1021/acsnano.7b01199.
  • B. Kirbus et al., Real-time 3D imaging of nanoscale ferroelectric domain wall dynamics in lithium niobate single crystals under electric stimuli: implications for domain-wall-based nanoelectronic devices, ACS Appl. Nano Mater. 2 (9), 5787 (2019). DOI: 10.1021/acsanm.9b01240.
  • D. O. Alikin et al., Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals, Appl. Phys. Lett. 106 (18), 182902 (2015). DOI: 10.1063/1.4919872.
  • Y. M. Alikin et al., Tilt control of the charged domain walls created by local switching on the non-polar cut of MgO doped lithium niobate single crystals, Ferroelectrics 574 (1), 16 (2021). DOI: 10.1080/00150193.2021.1888044.
  • A. P. Turygin et al., Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip, ACS Appl. Mater. Interfaces 10 (42), 36211 (2018). DOI: 10.1021/acsami.8b10220.
  • A. P. Turygin et al., Self-organized domain formation by moving the biased SPM tip, Ferroelectrics 542 (1), 70 (2019). DOI: 10.1080/00150193.2019.1574665.
  • A. V. Ievlev et al., Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals, ACS Nano 9 (1), 769 (2015). DOI: 10.1021/nn506268g.
  • A. P. Turygin et al., The formation of self-organized domain structures at non-polar cuts of lithium niobate as a result of local switching by an SPM tip, Materials 10 (10), 1143 (2017). DOI: 10.3390/ma10101143.
  • V. Y. Shur et al., Forward growth of ferroelectric domains with charged domain walls. Local switching on non-polar cuts, J. Appl. Phys. 129 (4), 044103 (2021). DOI: 10.1063/5.0037680.
  • R. G. Batchko et al., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation, Appl. Phys. Lett. 75 (12), 1673 (1999). DOI: 10.1063/1.124787.
  • V. Ya. Shur et al., Temperature effect on the stability of the polarized state created by local electric fields in strontium barium niobate single crystals, Sci. Rep. 7 (1), 125 (2017). DOI: 10.1038/s41598-017-00172-1.
  • V. Y. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Micro- and nano-domain engineering in lithium niobate, Appl. Phys. Rev. 2 (4), 040604 (2015). DOI: 10.1063/1.4928591.
  • V. Y. Shur et al., Recent achievements in domain engineering in lithium niobate and lithium tantalate, Ferroelectrics 257 (1), 191 (2001). DOI: 10.1080/00150190108016300.
  • V. Y. Shur, Nano, and micro-domain engineering in normal and relaxor ferroelectrics, in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications (Cambridge, Woodhead Publishing Ltd, 2008), pp. 62–669. DOI: 10.1533/9781845694005.5.622.
  • P. R. Potnis, N.-T. Tsou, and J. E. Huber, A review of domain modelling and domain imaging techniques in ferroelectric crystals, Materials (Basel) 4 (2), 417 (2011). DOI: 10.3390/ma4020417.
  • V. Ya. Shur, and P. S. Zelenovskiy, Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy, J. Appl. Phys. 116 (6), 066802 (2014). DOI: 10.1063/1.4891397.
  • W. Melitz et al., Kelvin probe force microscopy and its application, Surf. Sci. Rep. 66 (1), 1 (2011). DOI: 10.1016/j.surfrep.2010.10.001.
  • M. Schröder et al., Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals, Mater. Res. Express 1 (3), 035012 (2014). DOI: 10.1088/2053-1591/1/3/035012.
  • M. Schröder et al., Conducting domain walls in lithium niobate single crystals, Adv. Funct. Mater. 22 (18), 3936 (2012). DOI: 10.1002/adfm.201201174.
  • V. Shur et al., Physical basis of the domain engineering in the bulk ferroelectrics, Ferroelectrics 221 (1), 157 (1999). DOI: 10.1080/00150199908016450.
  • V. G. Zalessky, and S. O. Fregatov, Micrometer-scale ferroelectric domain formation and injection of space charge in Y-cut LiNbO3 crystals, Phys. B 371 (1), 158 (2006). DOI: 10.1016/j.physb.2005.10.097.
  • S. Bühlmann, E. Colla, and P. Muralt, Polarization reversal due to charge injection in ferroelectric films, Phys. Rev. B 72 (21), 214120 (2005). DOI: 10.1103/PhysRevB.72.214120.
  • Y. Kim et al., Injection charge assisted polarization reversal in ferroelectric thin films, Appl. Phys. Lett. 90 (7), 072910 (2007). DOI: 10.1063/1.2679902.
  • A. V. Ievlev et al., Ferroelectric switching by the grounded scanning probe microscopy tip, Phys. Rev. B 91 (21), 214109 (2015). DOI: 10.1103/PhysRevB.91.214109.
  • S. Hong et al., Screening mechanisms at polar oxide heterointerfaces, Rep. Prog. Phys. 79 (7), 076501 (2016). DOI: 10.1088/0034-4885/79/7/076501.
  • V. Ya. Shur et al., Domain structure of lead germanate, Ferroelectrics 98 (1), 29 (1989). DOI: 10.1080/00150198908217568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.