105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An antibacterial non-woven fabric: preparation, antibacterial and mechanical properties

, , , , , , , & show all
Pages 35-46 | Received 19 Aug 2021, Accepted 20 Feb 2022, Published online: 29 Aug 2022

References

  • S. Kaplan, S. Pulan, and S. Ulusoy, Objective and subjective performance evaluations of wet wipes including herbal components, J. Ind. Text. 47 (8), 1959 (2018). DOI: 10.1177/1528083717716165.
  • D. Kharaghani et al., Preparation and in-vitro assessment of hierarchal organized antibacterial breath mask based on polyacrylonitrile/silver (PAN/AgNPs) nanofiber, Nanomaterials 8 (7), 461 (2018). DOI: 10.3390/nano.8070.
  • Z. Li et al., Topological radiated dendrites featuring persistent bactericidal activity for daily personal protection, Small 17 (24), (2021). DOI: 10.1002/smll.202100562.
  • D. Markovic et al., Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles, Appl. Surf. Sci. 527, (2020). DOI: 10.1016/j.apsusc.2020.146829.
  • J. Huang et al., Antibacterial polypropylene via surface-initiated atom transfer radical polymerization, Biomacromolecules 8 (5), 1396 (2007). DOI: 10.1021/bm061236j.
  • P. Slepicka et al., Antibacterial properties of modified biodegradable PHB non-woven fabric, Mater Sci. Eng. C-Mater. Biol. Appl. 65, 364 (2016).
  • G. Irena, B. Jolanta, and Z. Karolina, Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film, Appl. Surf. Sci. 255 (19), 8293 (2009). DOI: 10.1016/j.apsusc.2009.05.126.
  • Y. Chen et al., Multifunctional self-fluorescent polymer nanogels for label-free imaging and drug delivery, Chem. Commun. (Camb.) 49 (3), 297 (2013). DOI: 10.1039/c2cc37386f.
  • L. Gao et al., Negative oxygen ions production by superamphiphobic and antibacterial TiO2/Cu2O composite film anchored on wooden substrates, Sci. Rep. 6, 26055 (2016). DOI: 10.1038/srep26055.
  • M. H. Kudzin et al., Deposition of copper on poly(lactide) non-woven fabrics by magnetron sputtering-fabrication of new multi-functional, antimicrobial composite materials, Materials 13 (18), 3971 (2020). DOI: 10.3390/ma13183971.
  • C. Silvestre et al., Development of antibacterial composite films based on isotactic polypropylene and coated ZnO particles for active food packaging, Coatings 6 (1), 4 (2016). DOI: 10.3390/coatings6010004.
  • Z. Xu et al., Antimicrobial polysulfone blended ultrafiltration membranes prepared with Ag/Cu2O hybrid nanowires, J. Membr. Sci. 509, 83 (2016). DOI: 10.1016/j.memsci.2016.02.035.
  • F. Rehman et al., Antibacterial performance of Tencel fabric dyed with pomegranate peel extracted via ultrasonic method, Cellulose 25 (7), 4251 (2018). DOI: 10.1007/s10570-018-1864-6.
  • M. H. Kudzin et al., Biofunctionalization of textile materials.1. Biofunctionalization of poly(propylene) (pp) nonwovens fabrics by alafosfalin, Coatings 9 (7), 412 (2019). DOI: 10.3390/coatings9070.
  • S.-H. Park et al., Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties, J. Membr. Sci. 499, 80 (2016). DOI: 10.1016/j.memsci.2015.09.060.
  • Z. Zhang et al., Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities, Mater. Sci. Eng. C Mater. Biol. Appl. 69, 462 (2016). DOI: 10.1016/j.msec.2016.07.015.
  • S. Peng et al., Polyimide with half encapsulated silver nanoparticles grafted ceramic composite membrane: Enhanced silver stability and lasting anti-biofouling performance, J. Membr. Sci. 611, 118340 (2020). DOI: 10.1016/j.memsci.2020.118340.
  • S. J. Burr, P. A. Williams, and I. Ratcliffe, Synthesis of cationic alkylated chitosans and an investigation of their rheological properties and interaction with anionic surfactant, Carbohydr. Polym. 201, 615 (2018). DOI: 10.1016/j.carbpol.2018.08.105.
  • H. M. Fahmy, A. A. Aly, and A. Abou-Okeil, A non-woven fabric wound dressing containing layer-by-layer deposited hyaluronic acid and chitosan, Int. J. Biol. Macromol. 114, 929 (2018). DOI: 10.1016/j.ijbiomac.2018.03.149.
  • A. Mogrovejo-Valdivia et al., In vitro evaluation of drug release and antibacterial activity of a silver-loaded wound dressing coated with a multilayer system, Int. J. Pharm. 556, 301 (2019). DOI: 10.1016/j.ijpharm.2018.12.018.
  • A. Verlee, S. Mincke, and C. V. Stevens, Recent developments in antibacterial and antifungal chitosan and its derivatives, Carbohydr. Polym. 164, 268 (2017). DOI: 10.1016/j.carbpol.2017.02.001.
  • R. M. Abdel-Rahman et al., Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications, Int. J. Biol. Macromol. 89, 725 (2016). DOI: 10.1016/j.ijbiomac.2016.04.087.
  • L. W. Chan et al., PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage, Acta Biomater 31, 178 (2016). DOI: 10.1016/j.actbio.2015.11.017.
  • T. Dai et al., Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects, Expert. Rev. Anti Infect. Ther. 9 (7), 857 (2011). DOI: 10.1586/eri.11.59.
  • M. Kong et al., Antimicrobial properties of chitosan and mode of action: A state of the art review, Int. J. Food Microbiol. 144 (1), 51 (2010). DOI: 10.1016/j.ijfoodmicro.2010.09.012.
  • W. Wang et al., Chitosan derivatives and their application in biomedicine, IJMS 21 (2), 487 (2020). DOI: 10.3390/ijms21020487.
  • L. Wei et al., The antioxidant and antifungal activity of chitosan derivatives bearing Schiff bases and quaternary ammonium salts, Carbohydr. Polym. 226, 115256 (2019). DOI: 10.1016/j.carbpol.2019.115256.
  • L. Gao et al., A robust superhydrophobic antibacterial Ag-TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination, Ceram. Int. 42 (2), 2170 (2016). DOI: 10.1016/j.ceramint.2015.10.002.
  • R. R. Gadkari et al., Configuration of a unique antibacterial needle-punched nonwoven fabric from silver impregnated polyester nanocomposite fibres, J. Ind. Text. 0, 152808372092472 (2020). DOI: 10.1177/1528083720924727.
  • L. Wang et al., The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour, Food Chem. 359, 129859 (2021). DOI: 10.1016/j.foodchem.2021.129859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.