148
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Multi-scale deep neural network for fault diagnosis method of rotating machinery

, , , , &
Pages 215-230 | Received 14 Aug 2021, Accepted 01 Dec 2022, Published online: 03 Jan 2023

References

  • H. Baozhu, Fault Diagnosis of Rolling Element Bearings Based on Wavelet Analysis and OS-ELM [D] (Beijing Jiaotong University, 2016).
  • W. Jinhua, Research on Fault Diagnosis Method of Mechanical Equipment Based on Nonlinear Filtering in the Background of Complex Noise [D] (Lanzhou, Lanzhou University of Technology, 2019).
  • N. Sikder et al., Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing [C]. International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). IEEE, 2019, pp. 564–569.
  • J. Chen et al., Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review [J], Mech. Syst. Sig. Process. 70–71, 1 (2016). DOI: 10.1016/j.ymssp.2015.08.023.
  • G. Rilling, P. Flandrin, and P. Goncalves, On empirical mode decomposition and its algorithms [C], IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP-03, Grado (I), Vol. 3, no. 3, 2003, p. 8.
  • M. Misra et al., Multivariate process monitoring and fault diagnosis by multi-scale PCA [J], Comput. Chem. Eng. 26 (9), 1281 (2002). DOI: 10.1016/S0098-1354(02)00093-5.
  • A. Widodo and B. S. Yang, Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors [J], Expert Syst. Appl. 33 (1), 241 (2007). DOI: 10.1016/j.eswa.2006.04.020.
  • Y. Jin et al., Rolling bearing fault diagnosis model combining with residual network and attention mechanism [J/OL], Mech. Sci. Technol. Aerosp. Eng. 39 (6), 919 (2020).
  • T. Ince et al., Real-time motor fault detection by 1-D convolutional neural networks [J], IEEE Trans. Ind. Electron. 63 (11), 7067 (2016). DOI: 10.1109/TIE.2016.2582729.
  • T. de Bruin, K. Verbert, and R. Babuska, Railway track circuit fault diagnosis using recurrent neural networks [J], IEEE Trans. Neural Netw. Learn Syst. 28 (3), 523 (2017). DOI: 10.1109/TNNLS.2016.2551940.
  • F. Jia et al., Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization [J], Mech. Syst. Sig. Process. 110, 349 (2018). DOI: 10.1016/j.ymssp.2018.03.025.
  • Y. Yu et al., Research on acoustic emission signal recognition of bearing fault based on TL-LSTM [J], Chin. J. Sci. Instrum. 40 (5), 51 (2019).
  • R. Zhang and J. Li, A survey on algorithm research of scene parsing based on deep learning [J], J. Comput. Res. Dev. 57 (04), 859 (2020).
  • F. Zhou, L. Jin, and J. Dong, Review of convolutional neural network [J], Chin. J. Comput. 40 (06), 1229 (2017).
  • L. Eren, T. Ince, and S. Kiranyaz, A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier [J], J. Signal Process. Syst. 91 (2), 179 (2019). DOI: 10.1007/s11265-018-1378-3.
  • L. Jing et al., A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox [J], Measurement 111, 1 (2017). DOI: 10.1016/j.measurement.2017.07.017.
  • W. Zhang et al., A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals [J], Sensors 17 (2), 425 (2017). DOI: 10.3390/s17020425.
  • G. Jiang et al., Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox [J], IEEE Trans. Ind. Electron. 66 (4), 3196 (2019). DOI: 10.1109/TIE.2018.2844805.
  • Z. Xu, C. Li, and Y. Yang, Fault diagnosis of rolling bearings using an Improved Multi-Scale Convolutional Neural Network with Feature Attention mechanism [J], ISA Trans. 110, 379 (2021). DOI: 10.1016/j.isatra.2020.10.054.
  • W. Huang et al., An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis [J], Neurocomputing 359, 77 (2019). DOI: 10.1016/j.neucom.2019.05.052.
  • B. Zhao et al., Deep multi-scale convolutional transfer learning network: A novel method for intelligent fault diagnosis of rolling bearings under variable working conditions and domains [J], Neurocomputing 407, 24 (2020). DOI: 10.1016/j.neucom.2020.04.073.
  • R. Liu et al., Multiscale kernel based residual convolutional neural network for motor fault diagnosis under nonstationary conditions [J], IEEE Trans. Ind. Inf. 16 (6), 3797 (2020). DOI: 10.1109/TII.2019.2941868.
  • F. Karim et al., LSTM fully convolutional networks for time series classification [J], IEEE Access 6, 1662 (2018). DOI: 10.1109/ACCESS.2017.2779939.
  • D. Di and N. A. N. Guofang, Application of CNN-RNN fusion method in fault diagnosis of rotating machinery [J], J. Light Indus. 35 (1), 102–108 (2020).
  • Y. Han, S. Zhang, and Z. Geng, Multi-frequency decomposition with fully convolutional neural network for time series classification [C]. 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018, p. 284. DOI: 10.1109/ICPR.2018.8545558.
  • R. Zhao et al., Learning to monitor machine health with convolutional bi-directional LSTM networks [J], Sensors 17 (2), 273 (2017). DOI: 10.3390/s17020273.
  • X. Ding and Q. He, Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis [J], IEEE Trans. Instrum. Meas. 66 (8), 1926 (2017). DOI: 10.1109/TIM.2017.2674738.
  • X. L. Wei et al., Cavitation fault diagnosis method for high-speed plunger pumps based on LSTM and CNN [J], Acta Aeronaut. Astronaut. Sin. 42 (3), 435–445 (2021). (In Chinese). DOI: 10.7527/S1000-6893.2020.23876.
  • L. Zhang et al., A review on deep learning applications in prognostics and health management [J], IEEE Access 7, 162415 (2019). DOI: 10.1109/ACCESS.2019.2950985.
  • M. Yuan, Y. Wu, and L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network [C]. 2016, IEEE International Conference on Aircraft Utility Systems (AUS). IEEE, 2016, pp. 135–140.
  • A. Yin et al., Fault diagnosis of wind turbine gearbox based on the optimized LSTM neural network with cosine loss [J], Sensors 20 (8), 2339 (2020). DOI: 10.3390/s20082339.
  • M. Qiao et al., Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads [J], IEEE Access 8, 66257 (2020). DOI: 10.1109/ACCESS.2020.2985617.
  • E. Keogh et al., Dimensionality reduction for fast similarity search in large time series databases [J], Knowl. Inf. Syst. 3 (3), 263 (2001). DOI: 10.1007/PL00011669.
  • Z. Wang, W. Yan, and T. Oates, Time series classification from scratch with deep neural networks: A strong baseline [C]. 2017 International joint conference on neural networks (IJCNN). IEEE, 2017, pp. 1578–1585. DOI: 10.1109/IJCNN.2017.7966039.
  • Society for Machinery Failure Prevention Technology [Online]. https://mfpt.org/fault-data-sets/ (accessed September 2019).
  • K. Li, School of Mechanical Engineering, Jiangnan University. http://mad-net.org:8765/explore.html?t=0.5831516555847212 (accessed August 2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.