100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Inductively coupled plasma etching of LiTaO3 in CHF3/Ar plasmas

, , , , &
Pages 24-34 | Received 19 Feb 2022, Accepted 27 Jun 2022, Published online: 05 Dec 2022

References

  • D. Zhang et al., Thickness effect and etching implement of silicon substrate of LiTaO3 thin film infrared detector, Proc. SPIE 7658 (2), 319 (2010). DOI: 10.1117/12.866068.
  • V. Norkus, G. Gerlach, and G. Hofmann, High-resolution pyroelectric linear ARR-ays based on LiTaO3, Proc. SPIE 4369, 322 (2001). DOI: 10.1117/12.445300.
  • J. X. Sun et al., A pyroelectric infrared detector by integrating LiTaO3 single crystal with grooved quartz using UV adhesive 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 123–126., 2018 DOI: 10.1109/NEMS.2018.8557034.
  • T. J. Lee, H. Y. Song, and D. J. Chung, ICP etching of Pt thin films for fabrication of SAW devices, J. Korean Phys. Soc. 42, S814 (2003).
  • M. Kadota, Y. Ishii, and S. Tanaka, A spurious-free, steep band rejection filter using a LiTaO3/quartz heteroacoustic layer surface acoustic wave resonator, Jpn. J. Appl. Phys. 59 (SK), 11 (2020). DOI: 10.35848/1347-4065/ab8bc1.
  • Y. Yan et al., Wafer-scale fabrication of 42° rotated Y-cut LiTaO3 -On-Insulator (LTOI) substrate for SAW resonator, ACS Appl. Electron. Mater. 1 (8), 1660 (2019). DOI: 10.1021/acsaelm.9b00351.
  • L. Wang et al., Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal, Opt. Express 27 (3), 2101 (2019). DOI: 10.1364/OE.27.002101.
  • C. D. Chen, and X. P. Hu, The modulation to Cerenkov second-harmonic in a LiTaO3 waveguide with annular poling domain, J. Opt. 18 (1), 015503 (2016). DOI: 10.1088/2040-8978/18/1/015503.
  • T. Inoue, D. Kuwamura, and T. Suhara, Electro-optic polarization conversion type modulator using periodically poled 8 mol % MgO doped congruent LiTaO3, Appl. Phys. Express 8 (6), 062601 (2015). DOI: 10.7567/APEX.8.062601.
  • B. B. Chikh, Influence of the Thermo-Opticity on the Birefringence in an Electro-Optic Modulator: Application to Lithium Tantalate, Ferroelectrics 471 (1), 139 (2014). DOI: 10.1080/00150193.2014.963480.
  • M. Okazaki et al., Electro-optic spatial light modulator using periodically-poled MgO:s-LiTaO3 waveguide, IEEE Photon. Technol. Lett. 27 (15), 1646 (2015). DOI: 10.1109/LPT.2015.2433313.
  • A. Kiraci, and H. Yurtseven, Order–disorder transition in the ferroelectric LiTaO3, Ferroelectrics 551 (1), 235 (2019). [Mismatch] 1068. DOI: 10.1080/00150193.2019.167.
  • K. Noguchi, H. Miyazawa, and O. Mitomi, 75GHz broadband Ti:LiNbO3 optical modulator with ridge structure, Electron. Lett. 30 (12), 949 (1994). DOI: 10.1049/el:19940646.
  • J. B. Li, X. H. Wang, and W. J. Wang, Mechanism analysis of terahertz graphene electro-optic modulator with plasma structure, J. Infrared Millim. W. 40 (2), 143 (2021). DOI: 10.11972/j.issn.1001-9014.2021.02.001.
  • J. Deng et al., Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas, J. Vac. Sci. Technol. B. 30 (1), 11208 (2012). DOI: 10.1116/1.3674282.
  • C. M. Chang et al., A parametric study of ICP-RIE etching on a lithium niobate substrate 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2015, 485–486. DOI: 10.1109/NEMS.2015.7147473.
  • M. Tamura, and S. Yoshikado, Eching characteristics of LiNbO3 crystal by fluorine gas plasma reactive ion etching, Surf. Coat. TECH 169, 230 (2003). DOI: 10.1016/S0257-8972(03)00070-7.
  • Z. Ren et al., Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma, J. Appl. Phys. 103 (3), 34109 (2008). DOI: 10.1063/1.2838180.
  • H. D. Nayeri, R. Asadi, and M. Malekmohammad, Fabrication of optical ridge waveguide in lithium niobate by argon sputtering and titanium self-alignment in-diffusion, J. Nanophoton. 10 (3), 36016 (2016). DOI: 10.1117/1.JNP.10.036016.
  • A. A. Osipov, S. E. Alexandrov, and G. A. Iankevich, The effect of a lithium niobate heating on the etching rate in SF6 ICP plasma, Mater. Res. Express 6 (4), 46306 (2019). DOI: 10.1088/2053-1591/aafa9d.
  • T. Fujii, and S. Yoshikado, Surface evaluation of LiNbO3 and LiTaO3 crystals etched using fluorine system gas plasma reactive ion etching, Elect. Eng. Jpn. 149 (2), 18 (2004). DOI: 10.1002/eej.10365.
  • Z. Ren et al., Fabrication of waveguides by inductively coupled plasma etching on LiNbO3/LiTaO3 single crystal film by liquid phase epitaxy growth, Passive Components & Fiber-based Devices IV, International Society for Optics and Photonics, 2007, 6781. DOI: 10.1117/12.742842.
  • C. Plehnert et al., Reactive ion beam etching of lithium tantalate and its application for pyroelectric infrared detectors, Surf. Coat. Technol. 74-75 (1-3), 932 (1995). DOI: 10.1016/0257-8972(94)08207-3.
  • A. A. Osipov, G. A. Iankevich, and S. E. Alexandrov, Monocrystalline Quartz ICP Etching: Road to High-Temperature Dry Etching, Plasma Chem. Plasma Process 40 (1), 423 (2020). DOI: 10.1007/s11090-019-10025-6.
  • L. Jiang, and R. Cheung, Impact of Ar addition to inductively coupled plasma etching of SiC in SF6/O2, Microelectron. Eng. S73–74 (5), 306 (2004). DOI: 10.1016/j.mee.2004.02.058.
  • Z. Q. Zhong et al., Etching mechanism of LiTaO3 crystals in CHF3/Ar plasma, 2021, Ferroelectrics 582 (1), 28 (2021). DOI: 10.1080/00150193.2021.1951032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.