131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Charged domain walls in lithium niobate and lithium tantalate crystals with composition gradients

, , &

References

  • V. Y. Shur, Domain nanotechnology in ferroelectric single crystals: lithium niobate and lithium tantalate family, Ferroelectrics 443, 71 (2013). DOI: 10.1080/10584587.2013.794638.
  • V. Shur, A. Akhmatkhanov, and I. Baturin, Micro- and nano-domain engineering in lithium niobate, Appl. Phys. Rev. 2, 040604 (2015). DOI: 10.1063/1.4928591.
  • J. Gonnissen et al., Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges, Adv. Funct. Mater 26, 7577 (2016). DOI: 10.1002/adfm.201603489.
  • A. I. Lobov et al., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3, Ferroelectrics 341, 109 (2006). DOI: 10.1080/00150190600896994.
  • K. Kitamura et al., Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system, J. Cryst. Growth 116, 327 (1992). DOI: 10.1016/0022-0248(92)90640-5.
  • L. Tian, V. Gopalan, and L. Galambos, Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration, Appl. Phys. Lett. 85, 4445 (2004). DOI: 10.1063/1.1814436.
  • Y. Chen et. al., Effect of Li diffusion on the domain inversion of LiNbO3 prepared by vapor transport equilibration, Appl. Phys. Lett. 81, 700 (2002). DOI: 10.1063/1.1494852.
  • V. I. Pryakhina et al., As-grown domain structure in lithium tantalate with spatially nonuniform composition, Ferroelectrics 525, 47 (2018). DOI: 10.1080/00150193.2018.1432926.
  • V. Y. Shur, Kinetics of polarization reversal in normal and relaxor ferroelectrics: Relaxation effects, Ph. Transit. 65, 49 (1998). DOI: 10.1080/01411599808209280.
  • P. Sharma, P. Schoenherr, and J. Seidel, Functional ferroic domain walls for nanoelectronics, Materials 12, 2927 (2019). DOI: 10.3390/ma12182927.
  • Y. Zuo, Y. A. Genenko, and B.-X. Xu, Charge compensation of head-to-head and tail-to-tail domain walls in barium titanate and its influence on conductivity, J. Appl. Phys. 116, 044109 (2014). DOI: 10.1063/1.4891259.
  • R. K. Vasudevan et al., Domain wall conduction and polarization-mediated transport in ferroelectrics, Adv. Funct. Mater. 23, 2592 (2013). DOI: 10.1002/adfm.201300085.
  • I. Stolichnov et al., Bent ferroelectric domain walls as reconfigurable metallic-like channels, Nano Lett. 15 (12), 8049 (2015). DOI: 10.1021/acs.nanolett.5b03450.
  • T. Sluka et al., Charged domain walls in ferroelectrics, in Topological structures in Ferroic Materials, edited by J. Seidel (Springer, Switzerland, 2016), pp. 103–138. DOI: 10.1007/978-3-319-25301-5_5.
  • V. Y. Shur et al., Time-dependent conduction current in lithium niobate crystals with charged domain walls, Appl. Phys. Lett. 103, 102905 (2013). DOI: 10.1063/1.4820351.
  • A. Q. Jiang et al., Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers, Nat. Mater. 19 (11), 1188 (2020). DOI: 10.1038/s41563-020-0702-z.
  • C. Godau et al., Enhancing the domain wall conductivity in lithium niobate single crystals, ACS Nano. 11 (5), 4816 (2017). DOI: 10.1021/acsnano.7b01199.
  • A. A. Esin, A. R. Akhmatkhanov, and V. Y. Shur, Tilt control of the charged domain walls in lithium niobate, Appl. Phys. Lett. 114 (9), 092901 (2019). DOI: 10.1063/1.5079478.
  • E. A. Eliseev et al., Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors, Phys. Rev. B 83 (23), 235313 (2011). DOI: 10.1103/PhysRevB.83.235313.
  • C. S. Werner et al., Large and accessible conductivity of charged domain walls in lithium niobate, Sci. Rep. 7 (1), 9862 (2017). DOI: 10.1038/s41598-017-09703-2.
  • P. Sharma et al., Roadmap for ferroelectric domain wall nanoelectronics, Adv. Funct. Mater. 32 (10), 2110263 (2022). DOI: 10.1002/adfm.202110263.
  • M. D. Fontana, and P. Bourson, Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices, Appl. Phys. Rev. 2 (4), 040602 (2015). DOI: 10.1063/1.4934203.
  • S. Kostritskii et al., Raman spectroscopy study of compositional inhomogeneity in lithium tantalate crystals, Appl. Phys. B 95 (1), 125 (2009). DOI: 10.1007/s00340-009-3442-y.
  • V. I. Pryakhina et al., Influence of composition gradients on heat induced initial domain structure in lithium tantalate, Ferroelectrics 542 (1), 13 (2019). DOI: 10.1080/00150193.2019.1574656.
  • E. D. Greshnyakov et al., Polarization reversal in lithium niobate with inhomogeneous stoichiometry deviation, Ferroelectrics 559 (1), 102 (2020). DOI: 10.1080/00150193.2020.1722011.
  • Y. Sheng et al., Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation, Opt. Express. 18 (16), 16539 (2010). DOI: 10.1364/OE.18.016539.
  • T. Bartholomäus et al., Pyroelectric coefficients of LiNbO3 crystals of different compositions, Phys. Status Solidi 142, K55–K57 (1994). DOI: 10.1002/pssa.2211420146.
  • S. S. Ping, and L. H. Lin, Dielectric and pyroelectric properties of LiTaO3 single crystals, Ferroelectrics 38 (1), 821 (1981). DOI: 10.1080/00150198108209548.
  • A. V. Turutin et al., Magnetoelectric metglas/bidomain Y+ 140°-cut lithium niobate composite for sensing fT magnetic fields, Appl. Phys. Lett. 112 (26), 262906 (2018). DOI: 10.1063/1.5038014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.