90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Forward growth and formation of 1D domain arrays by focused ion beam in Y-cut MgOLN

, , , &

References

  • K. K. Wong, Properties of lithium niobate (INSPEC, The Institution of Electrical Engineers, 2002)
  • R. S. Weis, and T. K. Gaylord, Lithium niobate: Summary of physical properties and crystal structure, Appl. Phys. A 37, 191 (1985). DOI: 10.1007/BF00614817.
  • L. Arizmendi, Photonic applications of lithium niobate crystals, Phys. Stat. Sol. A 201, 253 (2004). DOI: 10.1002/pssa.200303911.
  • S. Zhu, Y. Zhu, and N. Ming, Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice, Science 278, 843 (1997). DOI: 10.1126/science.278.5339.843.[Database].
  • Y. Niu et al., Research progress on periodically poled lithium niobate for nonlinear frequency conversion, Infrared Phys. Tech. 125, 104243 (2022). DOI: 10.1016/j.infrared.2022.104243.
  • A. Boes et al., Precise, reproducible nano-domain engineering in lithium niobate crystals, Appl. Phys. Lett. 107, 022901 (2015). DOI: 10.1063/1.4926910.
  • G. Rosenman et al., Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy, Appl. Phys. Lett. 82, 103 (2003). DOI: 10.1063/1.1534410.
  • C. Canalias et al., Mirrorless optical parametric oscillators, Nat. Photonics 1, 459 (2007). DOI: 10.1038/nphoton.2007.137.
  • F. Généreux et al., Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm, Appl. Phys. Lett. 91, 231112 (2007). DOI: 10.1063/1.2820384.
  • P. Rabiei, and P. Gunter, Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding, Appl. Phys. Lett. 85, 4603 (2004). DOI: 10.1063/1.1819527.
  • J. Zhao et al., Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity, J. Appl. Phys. 127, 193104 (2020). DOI: 10.1063/1.5143266.
  • S. Reitzig et al., “Seeing is believing”- in-depth analysis by co-imaging of periodically-poled x-cut lithium niobate thin films, Crystals 11, 288 (2021). DOI: 10.3390/cryst11030288.
  • D. S. Chezganov et al., Forward domain growth on the non-polar cut of lithium niobate crystal during irradiation by focused ion beam, Ferroelectrics 574, 92 (2021). DOI: 10.1080/00150193.2021.1888052.
  • D. S. Chezganov et al., Domain patterning of non-polar cut lithium niobate by focused ion beam, Ferroelectrics 559, 66 (2020). DOI: 10.1080/00150193.2020.1722007.
  • X. Li et al., Domain patterning in LiNbO3 and LiTaO3 by focused electron beam, J. Cryst. Growth 292, 324 (2006). DOI: 10.1016/j.jcrysgro.2006.04.028.
  • Y. Glickman et al., Electron-beam-induced domain poling in LiNbO3 for two-dimensional nonlinear frequency conversion, Appl. Phys. Lett. 88, 011103 (2006). DOI: 10.1063/1.2159089.
  • A. V. Ievlev et al., Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching, Nat. Phys. 10, 59 (2014). DOI: 10.1038/nphys2796.
  • A. P. Turygin et al., Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip, ACS Appl. Mater. Interfaces. 10 (42), 36211 (2018). DOI: 10.1021/acsami.8b10220.
  • Y. V. Pershin, and M. Di Ventra, Memory effects in complex materials and nanoscale systems, Adv. Phys. 60 (2), 145 (2011). DOI: 10.1080/00018732.2010.544961.
  • D. S. Chezganov et al., Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals, Appl. Phys. Lett. 110 (8), 082903 (2017). DOI: 10.1063/1.4977043.
  • N. Ohnishi, and T. Iizuka, Etching study of microdomains in LiNbO3 single crystals, J. Appl. Phys. 46 (3), 1063 (1975). DOI: 10.1063/1.322211.
  • D. Kip, P. Moretti, and S. Aulkemeyer, Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation, Opt. Lett. 20 (11), 1256 (1995). DOI: 10.1364/OL.20.001256.
  • V. Y. Shur et al., Forward growth of ferroelectric domains with charged domain walls. Local switching on non-polar cuts, J. Appl. Phys. 129 (4), 044103 (2021). DOI: 10.1063/5.0037680.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.