58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Off-centering of the Fe atom at the A site in SrTiO3: calculations and experiment

&
Pages 116-127 | Received 24 Aug 2022, Accepted 12 Jan 2023, Published online: 07 Mar 2023

References

  • L. G. Tejuca, J. L. G. Fierro (Eds.) Properties and Applications of Perovskite-Type Oxides (CRC Press, New York, 1992).
  • H.-C. Li et al., Near single crystal-level dielectric loss and nonlinearity in pulsed laser deposited SrTiO3 thin films, Appl. Phys. Lett. 73 (2), 190 (1998). DOI: 10.1063/1.121751.
  • K. Eisenbeiser et al., Field effect transistors with SrTiO3 gate dielectric on Si, Appl. Phys. Lett. 76 (10), 1324 (2000). DOI: 10.1063/1.126023.
  • J. Li, S et al., The origin of varistor property of SrTiO3-based ceramics, J. Mater. Sci. Mater. Electron 14, 483 (2003). DOI: 10.1023/A:1023916716329.
  • S. Ohta et al., Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature, Appl. Phys. Lett. 87 (9), 092108 (2005). DOI: 10.1063/1.2035889.
  • X. Lin, G et al., Critical doping for the onset of a two-band superconducting ground state in SrTiO3–δ, Phys. Rev. Lett. 112 (20), 207002 (2014). DOI: 10.1103/PhysRevLett.112.207002.
  • J. Park et al., Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3, Appl. Phys. Lett. 105 (18), 183103 (2014). DOI: 10.1063/1.4901053.
  • H. Kato, and A. Kudo, Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium, J. Phys. Chem. B 106 (19), 5029 (2002). DOI: 10.1021/jp0255482.
  • R. Konta et al., Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation, J. Phys. Chem. B 108 (26), 8992 (2004). DOI: 10.1021/jp049556p.
  • T. Hara, and T. Ishiguro, Oxygen sensitivity of SrTiO3 thin film prepared using atomic layer deposition, Sens. Actuators B 136 (2), 489 (2009). DOI: 10.1016/j.snb.2008.12.026.
  • V. V. Lemanov et al., Dielectric relaxation in SrTiO3:Mn, Phys. Solid State 46, 1442 (2004). DOI: 10.1134/1.1788776.
  • V. V. Lemanov et al., Dielectric relaxation in doped SrTiO3: Transition from classical thermal activation to quantum tunnelling, J. Appl. Phys. 98 (5), 056102 (2005). DOI: 10.1063/1.2035313.
  • A. Tkach, P. M. Vilarinho, and A. L. Kholkin, Polar behavior in Mn-doped SrTiO3 ceramics, Appl. Phys. Lett. 86 (17), 172902 (2005). DOI: 10.1063/1.1920414.
  • A. I. Lebedev et al., Direct evidence for off-centering of Mn impurity in SrTiO3, JETP Lett. 89 (9), 457 (2009). DOI: 10.1134/S0021364009090070.
  • I. Levin et al., X-ray absorption fine structure studies of Mn coordination in doped perovskite SrTiO3, Appl. Phys. Lett. 96 (5), 052904 (2010). DOI: 10.1063/1.3298369.
  • I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, Local environment and oxidation state of a Mn impurity in SrTiO3 determined from XAFS data, Bull. Russ. Acad. Sci. Phys. 74 (9), 1235 (2010). DOI: 10.3103/S1062873810090145.
  • M. Valant et al., The origin of magnetism in Mn-doped SrTiO3, Adv. Funct. Mater. 22 (10), 2114 (2012). DOI: 10.1002/adfm.201102482.
  • R. A. Maier et al., Substitutional mechanisms and structural relaxations for manganese in SrTiO3: Bridging the concentration gap for point-defect metrology, Chem. Mater. 32 (11), 4651 (2020). DOI: 10.1021/acs.chemmater.0c01082.
  • V. V. Shvartsman et al., (Sr,Mn)TiO3: A magnetoelectric multiglass, Phys. Rev. Lett. 101 (16), 165704 (2008). DOI: 10.1103/PhysRevLett.101.165704.
  • W. Kleemann et al., (Sr,Mn)TiO3 a magnetoelectrically coupled multiglass, J. Phys. Condens. Matter 20, 434216 (2008). DOI: 10.1088/0953-8984/20/43/434216.
  • I. A. Sluchinskaya, and A. I. Lebedev, Cobalt in strontium titanate as a new off-center magnetic impurity, Phys. Solid State 61, 390 (2019). DOI: 10.1134/S1063783419030302.
  • I. A. Sluchinskaya, and A. I. Lebedev, Electronic and magnetic properties of structural defects in SrTiO3(Co), J. Alloys Comp. 820, 153243 (2020). DOI: 10.1016/j.jallcom.2019.153243.
  • C. Garg, J. Kumar, and S. Nair, Absence of a multiglass state in some transition metal doped quantum paraelectrics, Phys. Rev. Mater. 2, 094409 (2018). DOI: 10.1103/PhysRevMaterials.2.094409.
  • T.-H. Xie, X. Sun, and J. Lin, Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti(IV)–O–Fe(II) formed in Fe-doped SrTiO3, J. Phys. Chem. C 112, 9753 (2008). DOI: 10.1021/jp711797a.
  • S. Molin et al., Structural and electrical properties of Sr(Ti, Fe)O3–δ materials for SOFC cathodes, J. Electroceram. 28 (1), 80 (2012). DOI: 10.1007/s10832-012-9683-x.
  • B. W. Faughnan, Photochromism in transition-metal-doped SrTiO3, Phys. Rev. B 4 (10), 3623 (1971). DOI: 10.1103/PhysRevB.4.3623.
  • R. Waser, T. Baiatu, and K.-H. Hardtl, DC electrical degradation of perovskite-type titanates: II, Single crystals, J. Am. Ceramic Soc. 73 (6), 1654 (1990). DOI: 10.1111/j.1151-2916.1990.tb09810.x.
  • C. Lenser et al., Spectroscopic study of the electric field induced valence change of Fe-defect centers in SrTiO3, Phys. Chem. Chem. Phys. 13 (46), 20779 (2011). DOI: 10.1039/C1CP21973A.
  • T. Menke et al., Separation of bulk and interface contributions to electroforming and resistive switching behaviour of epitaxial Fe-doped SrTiO3, J. Appl. Phys. 105 (6), 066104 (2009). DOI: 10.1063/1.3100209.
  • R. Muenstermann et al., Coexistence of filamentary and homogeneous resistive switching in Fe-doped thin-film memristive devices, Adv. Mater. 22 (43), 4819 (2010). DOI: 10.1002/adma.201001872.
  • M. Vračar et al., Jahn-Teller distortion around Fe4+ in Sr(FexTi1–x)O3–δ from X-ray absorption spectroscopy, X-ray diffraction, and vibrational spectroscopy, Phys. Rev. B 76 (17), 174107 (2007). DOI: 10.1103/PhysRevB.76.174107.
  • V. E. Alexandrov, J. Maier, and R. A. Evarestov, Ab initio study of SrFexTi1–xO3: Jahn-Teller distortion and electronic structure, Phys. Rev. B 77 (7), 075111 (2008). DOI: 10.1103/PhysRevB.77.075111.
  • A. Koehl et al., Detection of Fe2+ valence states in Fe doped SrTiO3 epitaxial thin films grown by pulsed laser deposition, Phys. Chem. Chem. Phys. 15 (21), 8311 (2013). DOI: 10.1039/C3CP50272D.
  • A. I. Lebedev et al., Impurity effect on the phase transition in GeTe studied by the EXAFS spectroscopy, Bull. Russ. Akad. Sci. Phys. 60, 1533 (1996).
  • A. I. Lebedev et al., Off-centering of Pb and Sn impurities in GeTe, Phys. Rev. B 55 (22), 14770 (1997). DOI: 10.1103/PhysRevB.55.14770.
  • B. Ravel, and M. Newville, Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12 (Pt 4), 537 (2005). DOI: 10.1107/S0909049505012719.
  • I. A. Sluchinskaya, and A. I. Lebedev, An experimental and theoretical study of Ni impurity centers in Ba0.8Sr0.2TiO3, Phys. Solid State 59, 1512 (2017). DOI: 10.1134/S106378341708025X.
  • K. F. Garrity et al., Pseudopotentials for high throughput DFT calculations, Comput. Mater. Sci. 81, 446 (2014). DOI: 10.1016/j.commatsci.2013.08.053.
  • A. I. Lebedev, and I. A. Sluchinskaya, On the nature of change in Ni oxidation state in BaTiO3–SrTiO3 system, Ferroelectrics 501, 1–8 (2016). DOI: 10.1080/00150193.2016.1198196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.