100
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of sintering temperature on microstructure, dielectric and ferroelectric properties of BaTiO3 ceramics

ORCID Icon, ORCID Icon & ORCID Icon
Pages 207-218 | Received 12 Nov 2022, Accepted 03 Mar 2023, Published online: 25 Apr 2023

References

  • Y. Bai et al., Both high reliability and giant electrocaloric strength in BaTiO3 ceramics, Sci. Rep. 3, 2895 (2013). DOI: 10.1038/srep02895.
  • Y. Bai et al., Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba1−xSrxTiO3 ceramic, Appl. Phys. Lett. 103, 162902 (2013). DOI: 10.1063/1.4825266.
  • X. Q. Liu et al., Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature, J. Am. Ceram. Soc. 96 (4), 1021 (2013). DOI: 10.1111/jace.12219.
  • T. Tsurumi et al., Dielectric properties of BaTiO3-based ceramics under high electric field, Jpn. J. Appl. Phys. 41 (Part 1, No. 11B), 6929 (2002). DOI: 10.1143/JJAP.41.6929.
  • J. F. Fernandez, P. Duran, and C. Moure, Influence of the doping method on X7R based-BaTiO3, Capacitors, Ferroelectr. 127 (1), 47 (1992). DOI: 10.1080/00150199208223345.
  • Y. Park and Y. H. Kim, The dielectric temperature characteristic of additives modified barium titanate having core-shell structured ceramics, J. Mater. Res. 10 (11), 2770 (1995). DOI: 10.1557/JMR.1995.2770.
  • G. Alrt, D. Hennings, and G. de With, Dielectric properties of fine‐grained barium titanate ceramics, J. Appl. Phys. 58 (4), 1619 (1985). DOI: 10.1063/1.336051.
  • Y. Park, Y. H. Kim, and H. G. Kim, The effect of grain size on dielectric behavior of BaTiO3 based X7R materials, Mater. Lett. 28 (1–3), 101 (1996). DOI: 10.1016/0167-577X(96)00054-7.
  • F. Guangneng, H. Lixia, and H. Xueguang, Synthesis of single-crystal BaTiO3 nanoparticles via a one-step sol-precipitation route, J. Cryst. Growth. 279 (3–4), 489 (2005). DOI: 10.1016/j.jcrysgro.2005.02.054.
  • B. Li, X. Wang, and L. Li, Synthesis and sintering behavior of BaTiO3 prepared by different chemical methods, Mater. Chem. Phys. 78, 292 (2002). DOI: 10.1016/S0254-0584(02)00351-6.
  • X. Wang et al., Nanocrystalline BaTiO3 powder via a sol process ambient conditions, J. Eur. Ceram. Soc. 26 (12), 2319 (2006). DOI: 10.1016/j.jeurceramsoc.2005.04.002.
  • P. P. Phule and S. H. Risbud, Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system, J. Mater. Sci. 25 (2), 1169 (1990). DOI: 10.1007/BF00585422.
  • S. H. Potdar, S. B. Deshpande, and S. K. Date, Alternative route for synthesis of barium titanyl oxalate: molecular precursor for macrocrystalline barium titanate powders, J. Amer. Ceram. Soc. 79 (10), 2795 (2005). DOI: 10.1111/j.1151-2916.1996.tb09055.x.
  • M. A. Shekar et al., Synthesis of fine-particle titanates by the pyrolysis of oxalate precursors, J. Mater. Sci. Mater. Electron. 3, 237 (1992). DOI: 10.1007/BF00703033.
  • K. M. Hung, W. C. DYang, and C. Huang, Preparation of nanometer-sized barium titanate powders by a sol-precipitation process with surfactants, J. Eur. Ceran. Soc. 23, 1901 (2003). DOI: 10.1016/S0955-2219(02)00431-4.
  • H. Salze, P. Odier, and B. Cales, Elaboration of fine micropowders from organometallic polymers precursors, J. Non-Cryst. Solids. 82, 314 (1986). DOI: 10.1016/0022-3093(86)90147-X.
  • M. Kakihana et al., Spectroscopic characterization of precursors used in the pechini-type polymerizable complex processing of barium titanate, Chem. Mater. 11, 438 (1999). DOI: 10.1021/cm9806681.
  • T. R. N. Kutty and R. Balachandran, Direct precipitation of lead zirconate titanate by the hydrothermal method, Mater. Res. Bull. 19, 1479 (1984). DOI: 10.1016/0025-5408(84)90262-9.
  • G. Ark, D. Hennings, and G. de With, Dielectric properties of fine-grained barium titanate ceramics, J. Appl. Phys. 58, 1619 (1985). DOI: 10.1063/1.336051.
  • A. A. Anan’eva, M. A. Ugryumova, and B. V. Strizhkov, Some anomalous properties of chemically pure barium titanate ceramic, Bull. Acud. Sci. USSR. Phys. Ser. 24, 1395 (1960).
  • K. Kinoshinta and A. Yamaji, Grain-size effects on dielectric properties in barium titanate, J. Appl. Phys. 47, 371 (1976). DOI: 10.1063/1.322330.
  • W. Li et al., Structure and electrical properties of BaTiO3 prepared by sol–gel process, J. Alloys Compd. 482, 137 (2009). DOI: 10.1016/j.jallcom.2009.02.137.
  • P. Klug and L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1954)
  • A. Rached et al., Structural, optical and electrical properties of barium titanate, Mater. Chem. Phys. 267, 124600 (2021). DOI: 10.1016/j.matchemphys.2021124600.
  • S. Sharma et al., Impedance and modulus spectroscopy characterization of lead free barium itanate ferroelectric ceramics, Ceram. Int. 41, 7713 (2015). DOI: 10.1016/j.ceramint.2015.02.102.
  • L. Kadira, A. Elmesbahi, and S. Sayouri, Dielectric study of calcium doped barium titanate Ba1-xCaTiO3 ceramics, Int. J. phys. Sci. 11, 71 (2016). DOI: 10.5897/IJPS2015.4415.
  • M. R. Panigrahi and S. Panigrahi, Diffuse phase transition and dielectric study in Ba0.95Ca0.05TiO3 ceramic, Phys. B Condens. Matter. 405, 2556 (2010). DOI: 10.1016/j.physb.2010.03.031.
  • K. Uchino and S. Nomura, Critical exponents of the dielectric constant in diffused-phase-transition crystals, Ferroelectr. Lett. 44, 55 (1982). DOI: 10.1080/00150198208260644.
  • S. K. Badge and A. V. Deshpande, Study of dielectric and ferroelectric properties of Bismuth TiTanate (Bi4Ti3O12) ceramic prepared by sol–gel synthesis and solid state reaction method with varying sintering temperature, Solid State Ion. 334, 21 (2019). DOI: 10.1016/j.ssi.2019.01.028.
  • V. K. Deshpande and S. N. Borkar, Study of dielectric and ferroelectric properties of barium titanate with glass addition for energy storage application, Ferroelectr. 571, 109 (2021). DOI: 10.1080/00150193.2020.1853745.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.