200
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical analysis on different beam geometries for vibration based piezoelectric energy harvester

ORCID Icon, , &
Pages 219-238 | Received 28 Oct 2022, Accepted 02 Mar 2023, Published online: 25 Apr 2023

References

  • K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems, Smart Mater. Struct. 17 (4), 043001 (2008). DOI: 10.1088/0964-1726/17/4/043001.
  • M. Safaei, H. A. Sodano, and S. R. Anton, A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018), Smart Mater. Struct. 28 (11), 113001 (2019). DOI: 10.1088/1361-665X/AB36E4.
  • E. L. Pradeesh et al., A review on piezoelectric energy harvesting, Microsyst. Technol. 28 (8), 1797 (2022). DOI: 10.1007/S00542-022-05334-4/FIGURES/8.
  • A. Čeponis, D. Mažeika, and A. Kilikevičius, Bidirectional piezoelectric energy harvester, Sensors 19 (18), 3845 (2019). DOI: 10.3390/s19183845.
  • R. Patel, S. McWilliam, and A. A. Popov, A geometric parameter study of piezoelectric coverage on a rectangular cantilever energy harvester, Smart Mater. Struct. 20 (8), 085004 (2011). DOI: 10.1088/0964-1726/20/8/085004.
  • R. Ai et al., Piezoelectric vibration-based energy harvesting enhancement exploiting nonsmoothness, Actuators 8 (1), 25 (2019). DOI: 10.3390/act8010025.
  • M. Akbar, and J. L. Curiel-Sosa, Evaluation of piezoelectric energy harvester under dynamic bending by means of hybrid mathematical/isogeometric analysis, Int. J. Mech. Mater. Des. 14 (4), 647 (2018). DOI: 10.1007/s10999-017-9395-0.
  • D. Cao, Y. Gao, and W. Hu, Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments, Acta Mech. Sin./Lixue Xuebao 35 (4), 894 (2019). DOI: 10.1007/s10409-019-00852-3.
  • F. U. Khan, and T. Ali, A piezoelectric based energy harvester for simultaneous energy generation and vibration isolation, Int. J. Energy Res. 43 (11), 5922 (2019). DOI: 10.1002/er.4700.
  • Y. Liao, and J. Liang, Unified modeling, analysis and comparison of piezoelectric vibration energy harvesters, Mech. Syst. Signal Process. 123 (2019), 403 (2019). DOI: 10.1016/j.ymssp.2019.01.025.
  • S. Ravi, and A. Zilian, Numerical modeling of flow-driven piezoelectric energy harvesting devices, in Computational Methods in Applied Sciences, ed. A. Ibrahimbegovic, (Springer Netherlands, Dordrecht, 2016), pp. 399–426), Vol. 41.
  • V. Shah et al., Numerical and experimental study of bistable piezoelectric energy harvester, Integr. Ferroelectr. 192 (1), 38 (2018). DOI: 10.1080/10584587.2018.1521669.
  • M. Senthilkumar, M. G. Vasundhara, and G. K. Kalavathi, Electromechanical analytical model of shape memory alloy based tunable cantilevered piezoelectric energy harvester, Int. J. Mech. Mater. Des. 15 (3), 611 (2019). DOI: 10.1007/s10999-018-9413-x.
  • M. G. Vasundhara, M. Senthilkumar, and G. K. Kalavathi, A distributed parametric model of Brinson shape memory alloy based resonant frequency tunable cantilevered PZT energy harvester, Int. J. Mech. Mater. Des. 15 (3), 555 (2019). DOI: 10.1007/s10999-018-9429-2.
  • M. G. Vasundhara, M. Senthilkumar, and G. K. Kalavathi, A distributed parametric model of shape memory alloy-based resonant frequency tunable cantilevered PZT energy harvester with tip mass, ISSS J. Micro Smart Syst. 8 (1), 13 (2019). DOI: 10.1007/s41683-019-00034-0.
  • X. Wu, and D. Lee, Miniaturized piezoelectric energy harvester for battery‐free portable electronics, Int. J. Energy Res. 43 (6), er.4431 (2019). DOI: 10.1002/er.4431.
  • E. L. Pradeesh, S. Udhayakumar, and C. Sathishkumar, Investigation on various beam geometries for piezoelectric energy harvester with two serially mounted piezoelectric materials, SN Appl. Sci. 1 (12), 1 (2019). DOI: 10.1007/s42452-019-1709-4.
  • G. Zhang et al., Design and performance of hybrid piezoelectric-electromagnetic energy harvester with trapezoidal beam and magnet sleeve, J. Appl. Phys. 125 (8), 084101 (2019). DOI: 10.1063/1.5087024.
  • E. L. Pradeesh et al., Design and development of frequency tuneable vibration based piezoelectric energy harvester, Ferroelectrics 584 (1), 85 (2021). DOI: 10.1080/00150193.2021.1984779.
  • E. L. Pradeesh, and S. Udhayakumar, Effect of placement of piezoelectric material and proof mass on the performance of piezoelectric energy harvester, Mech. Syst. Signal Process. 130, 664 (2019). DOI: 10.1016/j.ymssp.2019.05.044.
  • E. L. Pradeesh, and S. Udhayakumar, Investigation on the geometry of beams for piezoelectric energy harvester, Microsyst. Technol. 25 (9), 3463 (2019). DOI: 10.1007/s00542-018-4220-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.