95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Detection of crack defects in carbon fiber composites using passive infrared thermography

, , &
Pages 154-172 | Received 15 Jul 2022, Accepted 27 Mar 2023, Published online: 25 May 2023

References

  • S. Denis, V. Vladimir, and A. Chulkov, Infrared thermographic detector of hidden corrosion, Sens. Rev. 40 (3), 283 (2020).
  • B. Ramzan et al., Railroads surface crack detection using active thermography, presented at the International Bhurban Conference on Applied Sciences and Technologies, Islamabad, Pakistan, 12–16 Jan. 2021.
  • I. Garrido et al., Introduction of active thermography and automatic defect segmentation in the thermographic inspection of specimens of ceramic tiling for building façades, Infrared Physics & Technology 121, 104012 (2022). DOI: 10.1016/j.infrared.2021.104012.
  • I. Martinez, and E. Martinez, Qualitative timber structure assessment with passive IR thermography, Case Study Construct. Mater. 16, 1 (2022).
  • R. Ali et al., Passive autofocusing system for a thermal camera, IEEE Access 8, 130014 (2020). DOI: 10.1109/ACCESS.2020.3006356.
  • V. Popow, J. Vogtmann, and M. Gurka, In-situ characterization of impact damage in carbon fibre reinforced polymers using infrared thermography, Infrared Phys. Technol. 122, 104074 (2022). DOI: 10.1016/j.infrared.2022.10407.
  • I. Garrido et al., Thermographic methodologies used in infrastructure inspection: a review-data acquisition procedures, Infrared Phys. Technol. 111, 103481 (2020). DOI: 10.1016/j.infrared.2020.103481.
  • L. Elena, Applications of the infrared thermography in the energy audit of buildings: a review, Renew. Sustain. Energy Rev. 83 (3), 3077 (2018).
  • G. Jiancheng, and U. Shigeki, Image processing methodology for detecting delaminations using infrared thermography in CFRP-jacketed concrete members by infrared thermography, Compos. Struct. 270, 114040 (2021).
  • K. X. Wang et al., Thermal defect detection for substation equipment based on infrared image using convolutional neural network, Electronics 10 (16), 1986 (2021). DOI: 10.3390/electronics10161986.
  • Y. P. Cao et al., Two-stream convolutional neural network for non-destructive subsurface defect detection via similarity comparison of lock-in thermography signals, NDT & E Int. 112, 102246 (2020). DOI: 10.1016/j.ndteint.2020.102246.
  • N. Chris et al., Flaw detection and localization in curing fiber-reinforced polymer composites using infrared thermography and Kalman filtering: a simulation study, J. Nondestr. Eval. 40 (78), 2 (2021).
  • J. Q. Liu et al., Characterization method of surface crack based on laser thermography, IEEE Access 9, 76395 (2021). DOI: 10.1109/ACCESS.2021.3081435.
  • B. Oswald-Tranta, Lock-in inductive thermography for surface crack detection in different metals, Quant. InfraRed Thermograph. J. 16 (3–4), 276 (2019). DOI: 10.1080/17686733.2019.1592391.
  • P. Sandra et al., Long-term numerical analysis of subsurface delamination detection in concrete slabs via infrared thermography, Appl. Sci. 11 (10), 4323 (2021).
  • C. Lyu et al., Seeing the vibration: visual-based detection of low frequency vibration environment pollution, IEEE Sens. J. 21 (8), 10073 (2021). DOI: 10.1109/JSEN.2021.3059110.
  • N. N. Nagornov et al., RNS-based FPGA accelerators for high-quality 3D medical image wavelet processing using scaled filter coefficients, IEEE Access 10, 19215 (2022). DOI: 10.1109/ACCESS.2022.3151361.
  • T. O. Onur, Improved image denoising using wavelet edge detection based on Otsu’s thresholding, Acta Polytech. Hung. 19 (2), 79 (2022). DOI: 10.12700/APH.19.2.2022.2.5.
  • X. P. Wang et al., Integration of wavelet denoising and HHT applied to the analysis of bridge dynamic characteristics, Appl. Sci. 10 (10), 3605 (2020). DOI: 10.3390/app10103605.
  • Y. Binbin, An improved infrared image processing method based on adaptive threshold denoising, J. Image Video Proc. 5, 1 (2019).
  • T. E. Aravindan, and R. Seshasayanan, Medical image DENOISING scheme using discrete wavelet transform and optimization with different noises, Concurr. Comput. 34 (8), 1 (2022). DOI: 10.1002/cpe.5540.
  • L. Liu et al., Highly sensitive broadband differential infrared photoacoustic spectroscopy with wavelet denoising algorithm for trace gas detection, Photoacoustics 21, 100228 (2021). DOI: 10.1016/j.pacs.2020.100228.
  • A. Das, and S. S. Shylaja, CDDA: color-dominant deep autoencoder for faster and efficient bilateral image filtering, Signal Image Video Proc. 15 (6), 1189 (2021). DOI: 10.1007/s11760-020-01848-4.
  • G. M. Wu, S. Q. Luo, and Z. Yang, Optimal weighted bilateral filter with dual-range kernel for Gaussian noise removal, IET Image Proc. 14 (9), 1840 (2020). DOI: 10.1049/iet-ipr.2018.6272.
  • R. Chetia, S. M. B. Boruah, and P. P. Sahu, Quantum image edge detection using improved Sobel mask based on NEQR, Quant. Inf. Proc. 20 (1), 1 (2021). DOI: 10.1007/s11128-020-02944-7.
  • P. Kanchanatripop, and Z. Dafang, Adaptive image edge extraction based on discrete algorithm and classical canny operator, Symmetry 12 (11), 1749 (2020). DOI: 10.3390/sym12111749.
  • X. C. Zhu et al., A dual evaluation multi-scale template matching algorithm based on wavelet transform, Electron. Lett. 58 (4), 145 (2022). DOI: 10.1049/ell2.12386.
  • G. B. Chen, Z. Y. Jiang, and M. M. Amruzzaman, Radar remote sensing image retrieval algorithm based on improved Sobel operator, J. Vis. Commun. Image Represent. 71, 102720 (2020). DOI: 10.1016/j.jvcir.2019.102720.
  • J. F. Dou, Q. Qin, and Z. M. Tu, Robust image matching based on the information of SIFT, Optik 171, 850 (2018). DOI: 10.1016/j.ijleo.2018.06.094.
  • S. Harada, K. Tsujimori, and Y. Matsushita, Automatic Detection of Basal Plane Dislocations in a 150-mm SiC Epitaxial Wafer by Photoluminescence Imaging and Template-matching Algorithm, J. Electron. Mater. 51 (1), 243 (2022). DOI: 10.1007/s11664-021-09284-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.