30
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of temperature and pressure on mechanical and thermal properties of lithium boron nitride Li3BN2 with density functional theory

, , &
Pages 116-124 | Received 06 Sep 2022, Accepted 27 Mar 2023, Published online: 29 Jun 2023

References

  • K. Nemeth, Ultrahigh energy density Li-ion batteries based on cathodes of 1D metals with -Li-N-B-N- repeating units in alpha-LixBN2 (1 < x < 3, J. Chem. Phys. 141 (5), 054711 (2014).) DOI: 10.1063/1.4891868.
  • S. Karan et al., On the synthesis of lithium boron nitride (Li3BN2,)Ceram. Int 44, 7734 (2018). DOI: 10.1016/j.ceramint.2018.01.200.
  • S. Manari et al., New lithium-conducting nitride glass Li3BN2, Solid State Ionics 339, 114985 (2019). DOI: 10.1016/j.ssi.2019.05.020.
  • E. Satyanarayana et al., Li3BN2 as a transition metal free, high-capacity cathode for Li‐ion batteries, Chemelectrochem 6, 320 (2019). DOI: 10.1002/celc.201801415.
  • R. C. DeVries and J. F. Fleischer, The system Li3BN2 at high pressure and temperatures, Mat. Res. Bull. 4 (7), 433 (1969). DOI: 10.1016/0025-5408(69)90086-5.
  • L. C. Cai et al., Analysis of cubic boron nitride single crystal defects growth under high temperature and high pressure, J. Chem. 2020, 1 (2020).). DOI: 10.1155/2020/7853623.
  • L. C. Cai et al., Process optimization of large-sized cubic boron nitride single crystal synthesis with Li3N as catalyst, Ferroelectrics 566 (1), 145 (2020). DOI: 10.1080/00150193.2020.1762438.
  • M. Z. Lv et al., Analysis of transition mechanism of cubic boron nitride single crystals under high pressure-high temperature with valence electron structure calculation, Chinese Phys. Lett. 36 (1), 013101 (2019). DOI: 10.1088/0256-307X/36/1/013101.
  • M. Z. Lv et al., Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature, Appl. Surf. Sci 439, 780 (2018). DOI: 10.1016/j.apsusc.2018.01.111.
  • M. Z. Lv et al., Electron energy loss spectroscopy analysis for cubic boron nitride single crystals transition mechanism in Li3N-BN system, Mater. Lett 242, 75 (2019). DOI: 10.1016/j.matlet.2019.01.058.
  • Y. Hisanori et al., Tetragonal I41∕amd crystal structure of Li3BN2 from dehydrogenated L–B–N–H Structure of a new polymorph of lithium boron nitride, J. Appl. Phys. 99, 113523 (2006). DOI: 10.1063/1.2202236.
  • X. W. Sun et al., High-pressure and high-temperature physical properties of LiF studied by density functional theory calculations and molecular dynamics simulation, J. Phys. Chem. Solids 116, 209 (2018). DOI: 10.1016/j.jpcs.2018.01.037.
  • Q. C. Wang, H. S. Ding, and F. Y. Tian, Temperature dependent mechanical properties of MAB phase Fe2AlB2, Comput. Condens. Matter 34, e00786 (2023). DOI: 10.1016/j.cocom.2023.e00786.
  • E. G. Sinem and K. D. Emel, Prediction the structural, electronic, elastic and dynamical properties of LiAlGe and LiInGe half-Heusler crystals by density functional theory, Mater. Today Commun 32, 104082 (2022). DOI: 10.1016/j.mtcomm.2022.104082.
  • C.-W. Lü, C.-J. Wang, and J.-B. Gu, First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure, Acta Phys. Sin. 68 (7), 077102 (2019). DOI: 10.7498/aps.68.20182030.
  • P. Li et al., First-principles study of Co21W18 with pressure effect: The structural, mechanical, electronic properties and Debye temperature, Mater. Today Commun. 33, 104276 (2022). DOI: 10.1016/j.mtcomm.2022.104276.
  • F. F. Guo et al., Structural, mechanical, electronic and thermodynamic properties of cubic TiC compounds under different pressures: A first-principles study, Solid State Commun. 311, 113856 (2020). DOI: 10.1016/j.ssc.2020.113856.
  • L. C. Cai et al., First principles calculation of the lattice constants of hexagonal and cubic boron nitride to 3000 K and 30 GPa, Ferroelectrics 566 (1), 136 (2020). DOI: 10.1080/00150193.2020.1762437.
  • A. Ezaier et al., First principal study of structural, electronic, magnetic, thermodynamic, optical and thermoelectric properties of Nd(Co1−xFex)2 (x = 0 to 1,)J Phys. Chem. Solids 176, 111194 (2023). DOI: 10.1016/j.jpcs.2022.111194.
  • W. D. Han et al., First-principles investigation into the effect of pressure on structural, electronic, elastic, elastic anisotropy, thermoelectric and thermodynamic properties of CaMgSi, Results Phys. 14, 102483 (2019). DOI: 10.1016/j.rinp.2019.102483.
  • R. Indranil, E. Chinedu, and B. Ganesh, Examining the thermodynamic stability of mixed principal element oxides in AlCoCrFeNi high-entropy alloy by first-principles, Comput. Mater. Sci 213, 111619 (2022). DOI: 10.1016/j.commatsci.2022.111619.
  • D. C. Wallace, Thermoelastic Theory of Stressed Crystals and Higher-Order Elastic Constants, Solid State Phys. 25, 301 (1970). DOI: 10.1016/S0081-1947(08)60010-7.
  • F. Birch, Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain, J. Geophys. Res. 91 (B5), 4949 (1986). DOI: 10.1029/JB091iB05p04949.
  • Z. J. Wu et al., Crystal structures and elastic properties of super-hard IrN2 and IrN3 from first principles, Phys. Rev. B. 76 (5), 054115 (2007). DOI: 10.1103/PhysRevB.76.054115.
  • F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B. 90 (22), 224104 (2014). DOI: 10.1103/PhysRevB.90.224104.
  • K. Preeti et al., A first-principles prediction of thermophysical and thermoelectric performances of SrCeO3 perovs-kite, Energy Res. 46, 2934 (2022). DOI: 10.1002/er.7354.
  • L. O. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids. 24 (7), 909 (1963). DOI: 10.1016/0022-3697(63)90067-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.