58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Low frequency dielectric dispersion in the AgNbO3 ferroelectric ceramic system

, , , ORCID Icon, & ORCID Icon
Pages 120-128 | Received 24 Jul 2022, Accepted 31 Mar 2023, Published online: 17 Jul 2023

References

  • H. Lu et al., Mechanic writing of ferroelectric polarization, Science 336 (6077), 59 (2012). DOI: 10.1126/science.121869.
  • J. Wang et al., Negative-pressure-induced enhancement in a freestanding ferroelectric, Nat. Mater. 14 (10), 985 (2015). DOI: 10.1038/nmat4365.
  • X.-Z. Lu, and J. M. Rondinelli, Epitaxial-strain-induced polar-to-nonpolar transitions in layered oxides, Nat. Mater. 15 (9), 951 (2016). DOI: 10.1038/nmat4664.
  • K. Cordero-Edward et al., Ferroelectrics as smart mechanical materials, Adv. Mater. 29, 1702210 (2017). DOI: 10.1002/adma.201702210.
  • Z. Gao et al., Giant power output in lead-free ferroelectrics by shock-induced phase transition, Phys. Rev. Mater. 3, 035401 (2019). DOI: 10.1103/PhysRevMaterials.3.035401.
  • B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London and New York, NY, 1971). DOI: 10.1016/B978-0-12-379550-2.X5001-7.
  • G. H. Haertling, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc. 82 (4), 797 (1999). DOI: 10.1111/j.1151-2916.1999.tb01840.x.
  • RoHS2, Directive 2011/65/EU of the European Parliament and of the European Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment, Off. J. Eur. Union L174, 88 (2011). http://data.europa.eu/eli/dir/2011/65/oj
  • Y. Mendez-González, A. Peláiz-Barranco, and J. D. S. Guerra, Improved electrocaloric properties in La doped (Bi0.5Na0.5)0.92Ba0.08TiO3 lead-free ceramics, Appl. Phys. Lett. 114 (16), 162902 (2019). DOI: 10.1063/1.5088924.
  • G. Wang et al., Electroceramics for high-energy density capacitors: Current status and future perspectives, Chem. Rev. 121 (10), 6124 (2021). DOI: 10.1021/acs.chemrev.0c01264.
  • G. Li et al., Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation, Dalton Trans. 2009, 2423 (2009). DOI: 10.1039/B810126D.
  • M. E. Lines, and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (University Press, Oxford, 2001). DOI: 10.1093/acprof:oso/9780198507789.001.0001.
  • J. F. Scott, Ferroelectric Memories (Springer, Berlin-Heidelberg, 2013). DOI: 10.1007/978-3-662-04307-3.
  • D. Fu et al., AgNbO3: A lead-free material with large polarization and electromechanical response, Appl. Phys. Lett. 90 (25), 252907 (2007). DOI: 10.1063/1.2751136.
  • N. Luo et al., Aliovalent A-site engineered AgNbO3 lead- free antiferroelectric ceramics toward superior energy storage density, J. Mater. Chem. A 7 (23), 14118− (2019). DOI: 10.1039/C9TA02053E.
  • N. Luo et al., Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics, J. Mater. Chem. C7, 4999− (2019). DOI: 10.1039/C8TC06549G.
  • C. Xu et al., La/Mn Codoped AgNbO3 lead-free antiferroelectric ceramics with large energy density and power density, ACS Sustainable Chem. Eng. 6 (12), 16151− (2018). DOI: 10.1021/acssuschemeng.8b02821.
  • J. Gao et al., Local structure heterogeneity in Sm-doped AgNbO3 for improved energy-storage performance, ACS Appl. Mater. Interfaces 12 (5), 6097− (2020). DOI: 10.1021/acsami.9b20803.
  • G. E. Kugel et al., A Raman study of silver tantalate (AgTaO3) and its structural phase transition sequence, J. Phys. C: Solid State Phys. 20 (9), 1217 (1987). DOI: 10.1088/0022-3719/20/9/012.
  • M. Hafid et al., Study of the phase transition sequence of mixed silver tantalate-niobate (AgTa1–xNbxO3) by inelastic light scattering, J. Phys.: Condens. Matter 4 (9), 2333 (1992). DOI: 10.1088/0953-8984/4/9/026.
  • W. Fortin et al., Manifestation of Nb dynamics in Raman, microwave, and infrared spectra of the AgTaO3‐AgNbO3 mixed system, J. Appl. Phys. 79 (8), 4273 (1996). DOI: 10.1063/1.361796.
  • A. A. Volkov et al., High-frequency dielectric spectra of AgTaO3-AgNbO3 mixed ceramics, J. Phys.: Condens. Matter 7 (4), 785 (1995). DOI: 10.1088/0953-8984/7/4/009.
  • J. Petzelt et al., Infrared and microwave dielectric response of the disordered antiferroelectric Ag(Ta,Nb)O3 system, Ferroelectrics 223 (1), 235 (1999). DOI: 10.1080/00150199908260576.
  • K. F. S. Jesus et al., Structural evolution of La-modified AgNbO3 lead-free ceramics: Perspective from octahedral tilting and tolerance factor, Ceram. Int. 48 (14), 20506 (2022). DOI: 10.1016/j.ceramint.2022.04.013.
  • D. Yang et al., Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications, J. Mater. Chem. A 8 (45), 23724 (2020). DOI: 10.1039/D0TA08345C.
  • M. Yashima et al., Structure of ferroelectric silver niobate AgNbO3, Chem. Mater. 23 (7), 1643 (2011). DOI: 10.1021/cm103389q.
  • Y. Tian et al., High energy density in silver niobate ceramics, J. Mater. Chem. A 4 (44), 17279 (2016). DOI: 10.1039/C6TA06353E.
  • L. E. Cross, Relaxor ferroelectrics, Ferroelectrics 76 (1), 241 (1987). DOI: 10.1080/00150198708016945.
  • D. Viehland et al., Freezing of the polarization fluctuations in lead magnesium niobate relaxors, J. Appl. Phys. 68 (6), 2916 (1990). DOI: 10.1063/1.346425.
  • V. Westphal, W. Kleemann, and M. Glinchuk, Diffuse phase transitions and random-field-induced domain states of the ‘‘relaxor’’ ferroelectric PbMg1/3Nb2/3O3, Phys. Rev. Lett. 68 (6), 847 (1992). DOI: 10.1103/PhysRevLett.68.847.
  • C. W. Ahn et al., A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors, J. Korean Phys. Soc. 68 (12), 1481 (2016). DOI: 10.3938/jkps.68.1481.
  • A. Kania et al., Raman scattering, central peak and phase transitions in AgNbO3, J. Phys. C: Solid State Phys. 19 (1), 9 (1986). DOI: 10.1088/0022-3719/19/1/007.
  • M. Pawełczyk, Phase transitions in AgTaxNb1−xO3 solid solutions, Phase Trans. 8 (4), 273 (1987). DOI: 10.1080/01411598708220073.
  • P. Sciau et al., Structural investigation of AgNbO 3 phases using x-ray and neutron diffraction, J. Phys.: Condens. Matter 16 (16), 2795 (2004). DOI: 10.1088/0953-8984/16/16/004.
  • J. D. S. Guerra et al., Investigation of the conduction processes in PZT-based multiferroics: Analysis from Jonscher’s formalism, Phys. Status Solidi B 251 (5), 1020 (2014). DOI: 10.1002/pssb.201350336.
  • R. P. Auty, and R. H. Cole, Dielectric properties of ice and solid D2O, J. Chem. Phys. 20 (8), 1309 (1952). DOI: 10.1063/1.1700726.
  • Y. Xu, Ferroelectric Materials and Their Applications (Elsevier Science Publishers, Netherlands, 1991). DOI: 10.1016/C2009-0-12800-3.
  • S. Steinsvik et al., The defect structure of SrTi1−xFexO3−y (x = 0–0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS), J. Phys. Chem. Solids 58 (6), 969 (1997). DOI: 10.1016/S0022-3697(96)00200-4.
  • S. Poykko, and D. J. Chadi, First principles study of Pb vacancies in PbTiO3, Appl. Phys. Lett. 76 (4), 499 (2000). DOI: 10.1063/1.125800.
  • K. Uchino, and S. Hirose, Loss mechanisms in piezoelectrics: How to measure different losses separately, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 (1), 307 (2001). DOI: 10.1109/58.896144.
  • S. J. Zhang et al., Characterization of Mn-modified Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 single crystals for high power broad bandwidth transducers, Appl. Phys. Lett. 93 (12), 122908 (2008). DOI: 10.1063/1.2992081.
  • S. J. Zhang, and F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective, J. Appl. Phys. 111 (3), 031301 (2012). DOI: 10.1063/1.3679521.
  • K. S. Cole, and R. H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics, J. Chem. Phys. 9 (4), 341 (1941). DOI: 10.1063/1.1750906.
  • K. C. Kao, Dielectric Phenomena in Solids (Elsevier Academic Press, London, 2004). DOI: 10.1016/B978-0-12-396561-5.X5010-5.
  • A. Peláiz-Barranco, and J. D. S. Guerra, Dielectric relaxation related to single-ionized oxygen vacancies in (Pb1–xLax)(Zr0.90Ti0.10)1–x/4O3 ceramics, Mater. Res. Bull. 45 (9), 1311 (2010). DOI: 10.1016/j.materresbull.2010.04.026.
  • D. Adamchuk et al., Distributions of relaxation times in relaxor ferroelectric Ba(Ti0.8Ce0.2)O3, Ferroelectrics 553 (1), 103 (2019). DOI: 10.1080/00150193.2019.1683502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.