400
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Monitoring the ferroelectric phase transition of barium titanate ceramics via impulse excitation

, , &
Pages 171-187 | Received 24 Jul 2022, Accepted 31 Mar 2023, Published online: 17 Jul 2023

References

  • D. Berlincourt, and H. Jaffe, Elastic and piezoelectric coefficients of single-crystal barium titanate, Phys. Rev. 111 (1), 143 (1958). DOI: 10.1103/PhysRev.111.143.
  • S. Kashida et al., Ultrasonic velocities in BaTiO3, J. Phys. Soc. Jpn. 34 (4), 997 (1973). DOI: 10.1143/JPSJ.34.997.
  • J. M. Courdille, J. Dumas, and J. Servais, Logarithmic velocity variations for longitudinal ultrasonic waves in cubic BaTiO3 near its ferroelectric transition, J. Phyique. Lett. 39 (13), 227 (1978). DOI: 10.1051/jphyslet:019780039013022700.
  • J. H. Ko et al., Elastic softening and central peaks in BaTiO3 single crystals above the cubic-tetragonal phase-transition temperature, Appl. Phys. Lett. 93 (10), 102905 (2008). DOI: 10.1063/1.2980444.
  • L. Dong, D. S. Stone, and R. S. Lakes, Softening of bulk modulus and negative Poisson ratio in barium titanate ceramic near the Curie point, Philos. Mag. Lett. 90 (1), 23 (2010). DOI: 10.1080/09500830903344907.
  • J. H. Ko et al., Precursor dynamics in the ferroelectric phase transition of barium titanate single crystals studied by Brillouin light scattering, Phys. Rev. B 84 (9), 094123 (2011). DOI: 10.1103/PhysRevB.84.094123.
  • J. H. Ko et al., Logarithmic temperature variations of the elastic constant of barium titanate near the ferroelectric phase transition, Curr. Appl. Phys. 12 (4), 1185 (2012). DOI: 10.1016/j.cap.2012.02.055.
  • J. Lee et al., Complete determination of elastic stiffness coefficients and local symmetry breaking in the paraelectric barium titanate, Appl. Phys. Lett. 114 (7), 072901 (2019). DOI: 10.1063/1.5086964.
  • T. Ikeda, The internal friction of barium titanate ceramics, J. Phys. Soc. Jpn. 13 (8), 809 (1958). DOI: 10.1143/JPSJ.13.809.
  • E. J. Huibregtse, W. H. Bessey, and M. E. Drougard, Electromechanical behavior of single crystals of barium titanate from 25 to 160 °C, J. Appl. Phys. 30 (6), 899 (1959). DOI: 10.1063/1.1735260.
  • A. Y. Kudzin, L. K. Bunina, and O. A. Grzhegorzhevskii, Internal friction in single crystals of barium titanate, Fiz. Tverd. Tela, Sov. Phys. Solid State 11, 1939 (1969). 112397
  • A. Y. Kudzin, E. P. Kashchenko, and V. I. Kostrub, Diffusion potentials in barium titanate and the theory of PTC materials, Fiz. Tverd. Tela 13, 3733 (1971). /SovPhysSolid State 13, 3162 (1972).
  • B. L. Cheng et al., Mechanical loss and elastic modulus associated with phase transitions of barium titanate ceramics, J. Alloys Compounds 211-212, 352 (1994). DOI: 10.1016/0925-8388(94)90519-3.
  • B. L. Cheng et al., Mechanical loss and Young’s modulus associated with phase transitions of barium titanate based ceramics, J. Mater. Sci. 31 (18), 4951 (1996). DOI: 10.1007/BF00355886.
  • W. Duffy et al., Anelastic behavior of barium-titanate-based ceramic materials, MMTA. 26 (7), 1735 (1995). DOI: 10.1007/BF02670760.
  • Y. Chen et al., Grain size effects on the electric and mechanical properties of submicro BaTiO3 ceramics, J. Eur. Ceram. Soc. 40 (2), 391 (2020). DOI: 10.1016/j.jeurceramsoc.2019.09.033.
  • M. S. Alkathy, and K. C. J. Raju, Structural, dielectric, electromechanical, piezoelectric, elastic and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics, J. Alloys Compounds 737, 464 (2018). DOI: 10.1016/j.jallcom.2017.12.121.
  • K. Zloužeová et al., Partially sintered lead-free ceramics from piezoelectric powders prepared via conventional firing and spark plasma sintering (SPS) – Characterization of microstructure and dielectric properties, Ceram. Silik. 65 (1), 30 (2020). DOI: 10.13168/cs.2020.00439.
  • A. C. Dent et al., Effective elastic properties for unpoled barium titanate, J. Eur. Ceram. Soc. 27 (13-15), 3739 (2007). DOI: 10.1016/j.jeurceramsoc.2007.02.031.
  • B. Garbarz-Glos et al., Elastic properties of barium zirconate titanate ceramics, Integr. Ferroelectrics 123 (1), 130 (2011). DOI: 10.1080/10584587.2011.570666.
  • T. Ogawa, and T. Ikegaya, Elastic constants measured from acoustic wave velocities in barium titanate piezoelectric ceramics, Jpn. J. Appl. Phys. 54 (1), 011501 (2015). DOI: 10.7567/JJAP.54.011501.
  • R. W. C. Lewis et al., Microstructural modelling of the polarization and properties of porous ferroelectrics, Smart Mater. Struct. 20 (8), 085002 (2011). DOI: 10.1088/0964-1726/20/8/085002.
  • Y. Zhang et al., Understanding the effect of porosity on the polarization-field response of ferroelectric materials, Acta Mater. 154, 100 (2018). DOI: 10.1016/j.actamat.2018.05.007.
  • W. Pabst, S. Hříbalová, and T. Uhlířová, Quasi-laminate and quasi-columnate modeling of dielectric and piezoelectric properties of cubic-cell metamaterials, J. Eur. Ceram. Soc. 42 (4), 1396 (2022). DOI: 10.1016/j.jeurceramsoc.2021.12.013.
  • R. Bechmann, Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations, J. Acoust. Soc. Am. 28 (3), 347 (1956). DOI: 10.1121/1.1908324.
  • M. Zgonik et al., Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals, Phys. Rev. B Condens. Matter. 50 (9), 5941 (1994). DOI: 10.1103/physrevb.50.5941.
  • D. A. Berlincourt, H. H. A. Krueger, and C. Near, Properties of Piezoelectric Ceramics (Morgan Electro Ceramics, Wrexham, UK 1999
  • V. Dvořák, A thermodynamic theory of the cubic-orthorhombic phase transitions in boracites, Czech. J. Phys. 21 (12), 1250 (1971). DOI: 10.1007/BF01699488.
  • A. P. Levanyuk, K. A. Minaeva, and B. A. Strukov, Anomalous sound absorption near the Curie points of uniaxial ferroelectrics, /Sov. Phys. Solid State 10, 1919 (1968). Fiz. Tverd. Tela 102443
  • ASTM E 1876-99, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration (American Society for Testing of Materials/ASTM, West Conshohocken, PA 1999
  • A. S. Nowick, and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York, NY 1972
  • W. Pabst et al., Elastic properties and damping behavior of alumina-zirconia composites at room temperature, Ceram. Int. 38 (7), 5931 (2012). DOI: 10.1016/j.ceramint.2012.04.045.
  • E. Gregorová et al., Temperature dependence of damping in silica refractories measured via the impulse excitation technique, Ceram. Int. 44 (7), 8363 (2018). DOI: 10.1016/j.ceramint.2018.02.028.
  • E. Gregorová et al., Young’s modulus evolution during heating, re-sintering and cooling of partially sintered alumina ceramics, J. Eur. Ceram. Soc. 39 (5), 1893 (2019). DOI: 10.1016/j.jeurceramsoc.2019.01.005.
  • E. Gregorová et al., Temperature dependence of Young’s modulus and damping of partially sintered and dense zirconia ceramics, J Eur Ceram. Soc. 40 (5), 2063 (2020). DOI: 10.1016/j.jeurceramsoc.2019.12.064.
  • E. Gregorová et al., Microstructure and Young’s modulus evolution during re-sintering of partially sintered alumina-zirconia composites (ATZ ceramics), J. Eur. Ceram. Soc. 41 (6), 3559 (2021). DOI: 10.1016/j.jeurceramsoc.2021.01.045.
  • M. Marutake, A calculation of physical constants of ceramic barium titanate, J. Phys. Soc. Jpn. 11 (8), 807 (1956). DOI: 10.1143/JPSJ.11.807.
  • W. Pabst, and E. Gregorová, Elastic and thermal properties of porous materials – rigorous bounds and cross-property relations (Critical assessment 18), Mater. Sci. Technol. 31 (15), 1801 (2015). DOI: 10.1080/02670836.2015.1114697.
  • W. Pabst, and T. Uhlířová, Benchmark polynomials for the porosity dependence of elastic moduli and conductivity of partially sintered ceramics, J. Eur. Ceram. Soc. 41 (15), 7967 (2021). DOI: 10.1016/j.jeurceramsoc.2021.08.028.
  • B. Subramanyam, and K. S. Viswanathan, Elastic anomalies of barium titanate, J. Appl. Phys. 74 (2), 945 (1993). DOI: 10.1063/1.354836.
  • B. Subramanyam, and K. S. Viswanathan, Second order elastic anomalies in barium titanate from cubic to tetragonal phase transition, Pramana. - J. Phys. 41 (1), 31 (1993). DOI: 10.1007/BF02847315.
  • A. Bussmann-Holder, H. Beige, and G. Völkel, Precursor effects, broken local symmetry, and coexistence of order-disorder and displacive dynamics in perovskite ferroelectrics, Phys. Rev. B 79 (18), 184111 (2009). DOI: 10.1103/PhysRevB.79.184111.
  • W. Pabst, and E. Gregorová, Elastic properties of silica polymorphs – a review, Ceram. Silik 57 (3), 167 (2013).