44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spin-induced ferroelastics with pyrochlore lattices

, & ORCID Icon
Pages 1-9 | Received 18 Sep 2022, Accepted 25 Apr 2023, Published online: 29 Jul 2023

References

  • E. K. Salje, Phase Transitions in Ferroelastic and Co-Elastic Crystals. An Introduction for Mineralogists, Material Scientists and Physicists (Cambridge University Press, Cambridge, 1990).
  • V. K. Wadhawan, Ferroelasticity and related properties of crystals. Phase Trans. A Multinational J. 3 (1), 3 (1982). DOI: 10.1080/01411598208241323.
  • A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer New York Dordrecht Heidelberg, London, 2010), p. 821. DOI: 10.1007/978-1-4419-1417-0.
  • A. S. Sidorkin, Domain Structure in Ferroelectrics and Related Materials (Cambridge International Science Publishing, Cambridge, 2006), p. 234.
  • W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (7104), 759 (2006). DOI: 10.1038/nature05023.
  • S. W. Cheong and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nat. Mater. 6 (1), 13 (2007). DOI: 10.1038/nmat1804.
  • H. Schmid, Some symmetry aspects of ferroics and single phase multiferroics, J. Phys. Condens. Matter. 20 (43), 434201 (2008). DOI: 10.1088/0953-8984/20/43/434201.
  • S. Lee et al., Giant magneto-elastic coupling in multiferroic hexagonal manganites, Nature 451 (7180), 805 (2008). DOI: 10.1038/nature06507.
  • O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Order by distortion and string modes in pyrochlore antiferromagnets, Phys. Rev. Lett. 88 (6), 067203 (2002). DOI: 10.1103/PhysRevLett.88.067203.
  • K. Penc, N. Shannon, and H. Shiba, Half-magnetization plateau stabilized by structural distortion in the antiferromagnetic Heisenberg model on a pyrochlore lattice, Phys. Rev. Lett. 93 (19), 197203 (2004). DOI: 10.1103/PhysRevLett.93.197203.
  • J. Atulasimha and A. B. Flatau, A review of magnetostrictive iron–gallium alloys, Smart Mater. Struct. 20 (4), 043001 (2011). DOI: 10.1088/0964-1726/20/4/043001.
  • S. Massidda et al., Noncubic behavior of antiferromagnetic transition-metal monoxides with the rocksalt structure, Phys. Rev. Lett. 82 (2), 430 (1999). DOI: 10.1103/PhysRevLett.82.430.
  • K. Aizu, Possible species of ‘ferroelastic’ crystals and of simultaneously ferroelectric and ferroelastic crystals, J. Phys. Soc. Jpn. 27 (2), 387 (1969). DOI: 10.1143/JPSJ.27.387.
  • K. Aizu, Possible species of ferromagnetic, ferroelectric and ferroelastic crystals, Phys. Rev. B 2 (3), 754 (1970). DOI: 10.1103/PhysRevB.2.754.
  • V. Kocsis et al., Magnetoelasticity in ACr2O4 spinel oxides (A = Mn, Fe, Co, Ni, and Cu), Phys. Rev. B 87 (6), 064416 (2013). DOI: 10.1103/PhysRevB.87.064416.
  • M. A. Subramanian, G. Aravamudan, and G. V. S. Rao, Oxide pyrochlores - a review, Prog. Solid State Chem. 15 (2), 55 (1983). DOI: 10.1016/0079-6786(83)90001-8.
  • M. V. Talanov and V. M. Talanov, Structural diversity of ordered pyrochlores, Chem. Mater. 33 (8), 2706 (2021). DOI: 10.1021/acs.chemmater.0c04864.
  • M. V. Talanov and V. M. Talanov, Formation of breathing pyrochlore lattices: structural, thermodynamic and crystal chemical aspects, Cryst. Eng. Commun. 22 (7), 1176 (2020). DOI: 10.1039/C9CE01635J.
  • L. D. Landau and E. M. Lifshitz, Statistical Physics. Part 1 (Pergamon Press, Oxford, 1980), p. 449.
  • I. E. Dzialoshinsky, Thermodynamical theory of ‘weak’ ferromagnetism in antiferromagnetic substances, JETP 32, 1547 (1957). http://jetp.ras.ru/cgi-bin/dn/e_005_06_1259.pdf
  • E. F. Bertaut, Representation analysis of magnetic structures, Acta Crystallogr. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 24 (1), 217 (1968). DOI: 10.1107/S0567739468000306.
  • A. Oles et al., Magnetic Structures Determined by Neutron Diffraction (Polish Scientific Publishers, Warszawa, Krakov, 1976).
  • Y. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic Materials (Consultants Bureau, Plenum Publishing Corporation, New York, NY, 1991).
  • S. V. Gallego et al., MAGNDATA: towards a database of magnetic structures. I. The commensurate case, J. Appl. Crystallogr. 49 (5), 1750 (2016). DOI: 10.1107/S1600576716012863.
  • B. J. Campbell et al., ISODISPLACE: a web-based tool for exploring structural distortions, J. Appl. Crystallogr. 39 (4), 607 (2006). DOI: 10.1107/S0021889806014075.
  • J. Perez-Mato et al., Symmetry-based computational tools for magnetic crystallography, Annu. Rev. Mater. Res. 45 (1), 217 (2015). DOI: 10.1146/annurev-matsci-070214-021008.
  • V. P. Sakhnenko and V. M. Talanov, Deformational phase transitions in crystals of cubic classes: tensile strain, Phys. Solid State 21, 2435 (1979).
  • V. P. Sakhnenko and V. M. Talanov, Deformational phase transitions in crystals of cubic classes: shear deformations, Phys. Solid State 22, 785 (1980).
  • M. V. Talanov and V. M. Talanov, Order parameters and phase diagrams of ferroelastics with pyrochlore structure, Ferroelectrics 543 (1), 1 (2019). DOI: 10.1080/00150193.2019.1592423.
  • V. M. Talanov and G. V. Bezrukov, Thermodynamical model of interacting multilevel systems with a single order parameter 1. State equation, Phys. Solid State 96 (2), 475 (1986). DOI: 10.1002/pssa.2210960213.
  • V. M. Talanov, and G. V. Bezrukov, Thermodynamical model of interacting multilevel systems with a single order parameter 2. Phase diagrams, Phys. Solid State 97 (1), 111 (1986). DOI: 10.1002/pssa.2210970108.
  • P. Dalmas de Réotier et al., Long-range dynamical magnetic order and spin tunneling in then cooperative paramagnetic states of the pyrochlore analogous spinel antiferromagnets CdYb2X4 (X = S, Se), Phys. Rev. B 96, 134403 (2017). DOI: 10.1103/PhysRevB.96.134403.
  • A. S. Wills et al., Magnetic ordering in Gd2Sn2O7: the archetypal Heisenberg pyrochlore antiferromagnet, J. Phys. Condens. Matter. 18, L37–L42 (2006). DOI: 10.1088/0953-8984/18/3/L02.
  • S. Petit et al., Long-range order in the dipolar XY antiferromagnet Er2Sn2O7, Phys. Rev. Lett. 119 (18), 187202 (2017). DOI: 10.1103/PhysRevLett.119.187202.
  • A. Poole, A. S. Wills, and E. Leliévre-Berna, Magnetic ordering in the XY pyrochlore antiferromagnet Er2Ti2O7: a spherical neutron polarimetry study, J. Phys.Condens. Matter. 19, 452201 (2007). DOI: 10.1088/0953-8984/19/45/452201.
  • N. Taira, M. Wakeshima, and Y. Hinatsu, Magnetic susceptibility and specific heat studies on heavy rare earth ruthenate pyrochlores R2Ru2O7 (R = Gd–Yb), J. Mater. Chem. 12 (5), 1475 (2002). DOI: 10.1039/b110596p.
  • I. Mirebeau et al., Magnetic-moment fragmentation and monopole crystallization, Phys. Rev. Lett. 94 (24), 246402 (2005). DOI: 10.1103/PhysRevX.4.011007.
  • C. R. Wiebe et al., Magnetic ordering in the spin-ice candidate Ho2Ru2O7, Phys. Rev. Lett. 93 (7), 076403 (2004). DOI: 10.1103/PhysRevLett.93.076403.
  • S. J. Kim, W. C. Kim, and C. S. Kim, Neutron diffraction and Mössbauer studies on Fe1−xCr2S4 (x = 0.0, 0.04, 0.08), J. Appl. Phys. 91 (10), 7935 (2002). DOI: 10.1063/1.1451884.
  • J. Bertinshaw et al., Evolution of magnetic ordering in FeCr2Se4-xTex; x = 0 – 4.0, Sci. Rep. 4, 6079 (2014). DOI: 10.1038/srep06079.
  • B. Sattibabu et al., Neutron diffraction study and magnetic properties of NiFe2-xScxO4, Mater. Lett. 277, 128325 (2020). DOI: 10.1016/j.matlet.2020.128325.
  • Z. W. Ouyang et al., Magnetic structure, magnetostriction, and magnetic transitions of the Laves-phase compound NdCo2, Phys. Rev. B 71 (6), 064405 (2005). DOI: 10.1103/PhysRevB.71.064405.
  • A. P. Sazonov et al., Magnetic structure in the spin liquid Tb2Ti2O7 induced by a [111] magnetic field: Search for a magnetization plateau. Supplemental material: Benchmark for ab initio prediction of magnetic structures based on cluster multipole theory, Phys. Rev. B 88 (18), 184428 (2013). DOI: 10.1103/PhysRevB.88.184428.
  • Z. W. Ouyang et al., Temperature dependent neutron powder diffraction study of the Laves phase compound TbCo2, J. Alloys Compound. 390 (1–2), 21 (2005). DOI: 10.1016/j.jallcom.2004.08.028.
  • V. O. Garlea et al., Magnetic and orbital ordering in the spinel MnV2O4, Phys. Rev. Lett. 100 (6), 066404 (2008). DOI: 10.1103/PhysRevLett.100.066404.
  • K. Tomiyasu, and I. Kagomiya, Magnetic structure of NiCr2O4 studied by neutron scattering and magnetization measurements, J. Phys. Soc. Jpn. 73 (9), 2539 (2004). DOI: 10.1143/JPSJ.73.2539.
  • R. Martínez-Coronado et al., Crystal and magnetic structure of the Bi2RuMnO7 pyrochlore: a potential new cathode for solid oxide fuel cells, J. Power Sources 247, 876 (2014). DOI: 10.1016/j.jpowsour.2013.08.125.
  • Y. Xiao et al., Crystal and magnetic structures of Laves phase compound NdCo2 in the temperature range between 9 and 300 K, J. Alloys Compound. 420 (1–2), 29 (2006). DOI: 10.1016/j.jallcom.2005.10.073.
  • S. A. Nikitin et al., Magnetostriction and transformation of crystal structure of intermetallic compound NdCo2, J. Phys.: Conf. Ser., 303, 012023 (2011). DOI: 10.1088/1742-6596/303/1/012023.
  • Y. G. Xiao et al., Canted magnetic structure arising from rare-earth mixing in the Laves-phase compound (Nd0.5Tb0.5)Co2, Phys. Rev. B 73 (6), 064413 (2006). DOI: 10.1103/PhysRevB.73.064413.
  • N. V. Belov, N. N. Neronova, and T. S. Smirnova, Shubnikov groups, Sov. Phys. Crystallogr. 2, 311 (1957).
  • E. K. H. Salje, Ferroelastic materials, Annu. Rev. Mater. Res. 42 (1), 265 (2012). DOI: 10.1146/annurev-matsci-070511-155022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.