24
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the random temperature model for relaxors

, &
Pages 17-35 | Received 18 Sep 2022, Accepted 25 Apr 2023, Published online: 29 Jul 2023

References

  • V. A. Isupov, Nature of physical phenomena in ferroelectric relaxors, Phys. Solid State. 45 (6), 1107 (2003). DOI: 10.1134/1.1583909.
  • G. Burns and F. H. Dacol, Glassy polarization behavior in ferroelectrics compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zr1/3Nb2/3)O3, Solid State Commun. 48 (10), 853 (1983). DOI: 10.1016/0038-1098(83)90132-1.
  • L. N. Korotkov et al., Relaxor behaviour of (1−x) [0.7PbZrO3–0.3(K0.5, Bi0.5)TiO3]–xSrTiO3 solid solutions, J. Phys. D Appl. Phys. 38 (19), 3715 (2005). DOI: 10.1088/0022-3727/38/19/021.
  • S. A. Gridnev, Dielectric relaxation in disordered polar dielectrics, Ferroelectr. 266 (1), 507 (2002). DOI: 10.1080/00150190211307.
  • M. D. Glinchuk et al., Ferroelectricity induced by oxygen vacancies in relaxors with perovskite structure, Phys. Rev. B. 98 (9), 094102 (2018). DOI: 10.1103/PhysRevB.98.094102.
  • R. Pirc and R. Blinc, Spherical random-bond–random-field model of relaxor ferroelectrics, Phys. Rev. B. 60 (19), 13470 (1999). DOI: 10.1103/PhysRevB.60.13470.
  • M. D. Glinchuk et al., Description of ferroelectric phase transitions in solid solutions of relaxors in the framework of the random-field theory, Phys. Solid State. 43 (7), 1299 (2001). DOI: 10.1134/1.1386469.
  • P. Lehnen et al., Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61-xBa0.39 Nb2O6:Cex3+, Phys. Rev. B. 64 (22), 224109 (2001). DOI: 10.1103/PhysRevB.64.224109.
  • L. E. Cross, Relaxor ferroelectrics: An overview, Ferroelectr. 151 (1), 305 (1994). DOI: 10.1080/00150199408244755.
  • G. Burns, Dirty displacive ferroelectrics, Phys. Rev. B. 13 (1), 215 (1976). DOI: 10.1103/PhysRevB.13.215.
  • G. Burns and F. H. Dacol, Soft phonons in a ferroelectric polarization glass system, Solid State Commun. 58 (9), 567 (1986). DOI: 10.1016/0038-1098(86)90220-6.
  • B. N. Rolov and V. E. Yurkevich, Physics of Diffused Phase Transition (Rostov University Press, Rostov, 1983). (in Russian).
  • L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media. (V. 8 of Course of Theoretical Physics) (Pergamon Press, Oxford, 1960).
  • I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).
  • A. I. Baz’, Y. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics (Israel Program for Scientific Translations, Jerusalem, 1969).
  • F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press, Oxford/London/New York/Paris, 1962).
  • H. Bateman and A. Erdelyi, Higher Transcendental Functions. V. 2 (McGraw–Hill, New York, 1953).
  • U. Bianchi et al., Claster and domain-state dynamics of ferroelectric Sr1-xCaxTiO3 (x = 0.007), Phys. Rev. B Condens. Matter. 51 (14), 8737 (1995). DOI: 10.1103/PhysRevB.51.8737.
  • R. Kubo, Statistical Mechanics (North Holland Physics Publishing, Amsterdam/Oxford/New York/Tokyo, 1965).
  • L. D. Landau and E. M. Lifshitz, Statistical Physics (V. 5 of Course of Theoretical Physics) (Pergamon Press, Oxford, NY, 1969).
  • V. A. Kolemaev, O. V. Staroverov, and V. B. Turundaevskii, Probability theory and mathematical statistics, pp. 81–82, Moscow, Vysshaya Shkola. (1991). (in Russian).
  • V. V. Laguta, M. D. Glinchuk, and I. V. Kondakova, The Vogel-Fulcher law as a criterion for identifying a mixed ferroelectric-glass phase in potassium tantalate doped with lithium, Phys. Solid State. 46 (7), 1262 (2004). DOI: 10.1134/1.1778451.
  • A. A. Bokov et al., Dielectric spectra and Vogel-Fulcher scaling in Pb(In0.5Nb0.5)O3 relaxor ferroelectric, J. Phys. Condens. Matter. 11 (25), 4899 (1999). DOI: 10.1088/0953-8984/11/25/309.
  • I. E. Tumanov et al., Influence of Li2O on the nature of the dielectric response of ceramics PMN, presented at Proceedings of the International Scientific and Technical Conference INTERMATIC-2011, pp. 2., Moscow, MIREA, 2011.
  • A. L. Efros, Physics and Geometry of Disorder (Nauka, Moscow, 1982). (in Russian).
  • M. I. Sokolov, Dimensionalities and other geometric critical exponents in percolation theory, Sov. Phys. Usp. 29 (10), 924 (1986). DOI: 10.1070/PU1986v029n10ABEH003526.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.